Overview of DOE Energy Systems -Fossil Energy Power Systems

Presented at the Technical Review Meeting - Evaluation of Welding Issues in High Nickel and Stainless Steel Alloys for Advanced Energy Systems

Presentation Overview

NATIONAL ENERGY TECHNOLOGY LABORATORY

Overview of DOE Energy Systems - Fossil Energy Power Systems

- Supercritical carbon dioxide-based
 power cycles of interest to FE
- Application of the recompression Brayton cycle to boilers
- Advanced Ultra supercritical steambased cycle
- Allam cycle
- Advanced Ultra-supercritical Component (ComTest) Project Update
- STEP heater
- Summary

sCO₂ Power Cycles

Two Related Cycles with Multiple Applications

Recompression Brayton Cycle

- Multiple applications: FE, CSP, NE, WHR
- Incumbent to beat: USC/AUSC boilers
- >50% cycle efficiency possible
- Extremely compact turbomachinery
- Adaptable for dry cooling

S. DEPARTMENT OF

<u> Technology Laboratory</u>

National Energy

Allam Cycle

- Fuel flexible: coal syngas and natural gas
- Incumbent to beat: NGCC w/ post CCS
- Compatible w/ RD&D from indirect cycle
- >95+ % CO₂ capture at storage pressure
- Net water producer, if dry-cooled

CO₂ Pressure - Enthalpy Diagram for RCBC

State Points (SP)	Function / equipment
10 - 1	Heat addition / boiler
1 - 2	Turbine expansion - work out
2 - 3	High temp. recuperation w/sp 9-10
3 - 4	Low temp. recuperation w/ sp 6 – 7
4 - 5	Cooling / heat rejection
5 -6	Main compression
4 - 8	Re compression

RCBC = Recompression Brayton Cycle

Justification

- Indirect-fired supercritical CO₂ power cycles are being explored as an attractive alternative to steam Rankine cycles for a variety of heat sources including fossil, CSP, Nuclear, waste heat etc.
- Understanding the performance and cost potential is important for future investment into the technology

Highlights

- Coal-fired CFB heat source coupled to sCO₂ power cycles can be economically attractive compared to PCfired Rankine plants
- Recompression cycle with reheat offered highest plant efficiency and lowest COE for both capture and noncapture plants
- Partial cooling cycles had higher COEs for Midwest ISO ambient conditions but are expected to outperform recompression cycles at higher ambient temperatures

Outcomes

- Study is first of the kind to optimize sCO₂ plant designs using • simultaneous optimization tools available under FOQUS platform while considering several design variables and sub-system models
- Identified CFB and plant designs that have potential to achieve lower cost of electricity

Summary of Overall Plant HHV Efficiencies

Oxy-CFB with steam Rankin cycle VS sCO₂ modified recompression Brayton Cycles

- Relative to the steam Rankine cycles:
 - At 620 °C, sCO₂ cycles are 1.1 3.2 percentage points higher in efficiency
 - At 760 °C, sCO₂ cycles are 2.6 4.3 percentage points higher
- The addition of reheat improves sCO₂ cycle efficiency by 1.3 – 1.5 percentage points
- The addition of main compressor intercooling improves efficiency by 0.4 – 0.6 percentage points
 - Main compressor intercooling reduces compressor power requirements for both the main and bypass compressors

Summary of COE (w/o CO₂ T&S)

Steam Rankine vs. sCO₂ Cases

- Note that there is significant uncertainty in the CFB and sCO₂ component capital costs (-15% to +50%)
 - Large capital cost uncertainties being addressed via external projects:
 - $-sCO_2$ turbine (GE-GR)
 - Recuperators (Thar Energy)
 - Primary heat exchanger (EPRI)
- sCO₂ cases have comparable COE to steam Rankine plant at 620 °C, but reduced COE for 760 °C cases
- Main compressor intercooling improves COE 2.2 3.5 \$/MWh

• Low cost means of reducing sCO_2 cycle mass flow

 Reheat reduces the COE for the 620 °C cases, but increases COE for turbine inlet temperatures of 760 °C

• Due to the high cost of materials for the reheat portions of the cycle in 760 °C cases

Approach

- Depending on the case, identified a list of 12 17 optimization variables
- Refined Aspen models and integrated with other component sub-models in FOQUS platform
- Used derivative-free optimization algorithms available under FOQUS platform to conduct automated optimization of plant designs to minimize COE

Results

- For capture plants, recompression cycle with reheat offered 8% points higher plant efficiency and 14.6% lower LCOE compared to NETL Bituminous Baseline Rev4 B12B case
- For Non-capture plants, recompression cycle with reheat offered 4.7% points higher plant efficiency and 7% lower LCOE compared to NETL Bituminous Baseline Rev4 B12A case
- Optimal turbine inlet temperatures for sCO₂ power plants are in the range of 650 – 715 °C
- Lowering turbine inlet temperatures (to < 650 °C) and switching CFB tubing materials from Nickel to stainless steel alloys resulted in similar LCOE but lower plant efficiency

Optimized Performance and Cost for Indirect sCO2 Coal Plants

Limitations

- Accuracy of CFB cost estimation is still potentially low due to lack of good cost estimates and use of low fidelity CFB model
- Low accuracy of power cycle turbo-machinery cost algorithms

Suggested Follow-On Work

- Optimize sCO₂ plant designs for different plant sites and plant sizes using the developed FOQUS models
- Increase the CFB model fidelity by considering arrangement of tube banks, automated material selection and improving cost estimates for interconnecting piping
- Re-evaluate TEA/optimization as the technology evolves and more accurate cost sources become available
- Explore additional cases with relaxed design constraints for cycle split flows, cooler temperatures etc.

Authors

- Sandeep Pidaparti, KeyLogic
- Chuck White, KeyLogic

Updated Performance and Cost Evaluation for AUSC PC Plants

Justification

- Performance and cost implication of upgrading steam conditions and addition of second reheat is important for baseline comparisons
- Assessment could inform considerations made in meeting projected demands in future power markets

Highlights

- All AUSC PC plants considered generate electricity at higher efficiencies and with lower carbon footprints than those operating at subcritical, supercritical (SC), and ultra-supercritical (USC) steam conditions
- Double-reheat cycle offered highest net plant efficiency (HHV) for both capture and non-capture plants
- Additional advanced materials required for the second reheat loop negated any fuel savings gained from improved efficiency

Outcomes

- Levelized Cost of Electricity (LCOE) is lower for all single-reheat AUSC PC plants and for the capture double-reheat AUSC PC plant when compared to NETL Bituminous Baseline Rev4 SC PC cases
- Upgrading AUSC main steam pressure to 4,250 PSIG shows negligible gains over AUSC main steam pressure at 3,500 PSIG

Makeur

Updated Performance and Cost Evaluation for AUSC

Updated Performance and Cost Evaluation for AUSC PC Plants

Approach

- Conduct literature review to collect updated information
 on AUSC boiler/turbine technologies, costs, and
 configurations, specifically those for double-reheat cases
- Update Aspen models to be consistent with model versions used in NETL Bituminous Baseline Rev4, altering modeling tools for incorporation of double-reheat cases as necessary
- Employ third-party resources for optimization and detailed cost and performance estimates of double-reheat cases
- Use performance data to create cost estimates and determine LCOE for each case, following NETL Quality Guidelines for Energy System Studies methodologies

Limitations

- Cost estimates of plant components containing advanced alloy materials rely on data based on limited manufacture and procurement quantities to date
- Cost estimates reflect technical maturity of a conceptual, inverted tower PC boiler

Updated Performance and Cost Evaluation for AUSC PC Plants

CO₂ Emissions

Updated Performance and Cost Evaluation for AUSC PC Plants

Results

- For capture plants, upgrading to AUSC conditions offered 2.2-3.0 points higher net plant efficiency and 1.9-6.6 \$/MWh lower LCOE compared to NETL Bituminous Baseline Rev4 B12B case
- For non-capture plants, upgrading to AUSC conditions offered 2.2-3.0 points higher plant efficiency and for single-reheat cases, 3.1-3.5 \$/MWh lower LCOE compared to NETL Bituminous Baseline Rev4 B12A case
- Double-reheat non-capture plant shows increased LCOE compared to all other non-capture cases

Conclusions

- AUSC PC power plants offer gains in efficiency over traditional subcritical, SC, and USC PC power plants
- Some fuel savings are offset by increased capital costs at AUSC conditions, affecting LCOE
- AUSC PC power plants show negligible efficiency gains and LCOE improvement with increased steam pressure
- Additional reheat loop is not economically beneficial

Authors

- Eric Lewis, Deloitte
- Sydney Hughes, Leidos

Analysis of Natural Gas Direct-Fired sCO₂ Power Cycle

- Objective: Can NG direct sCO₂ plant can compete with NGCC CCS Air-MAC-ASU N₂ NG-direct sCO₂ plant design: Combustor Nat. Gas – Low pressure ASU with 99.5% sCO₂+O₂ purity Cooler Pump sCO₂ Thermal integration Compressor Cooler Oxy-NG Combustor MC • Cooled sCO₂ turbine Turbine LTR ITR HTR Purge ^VH₂O • Condensing sCO₂ cycle Cooling sCO₂ to CPU operation
 - CPU required for pipeline specs

¹ Weiland, N.T., and White, C.W., "Techno-economic Analysis of an Integrated Gasification Direct-Fired Supercritical CO2 Power Cycle," Fuel, 212:613-625, 2018. ² Weiland, N.T., Shelton, W., Shultz, T., White, C.W., and Gray, D. "Performance and Cost Assessment of a Coal Gasification Power Plant Integrated with a Direct-Fired sCO2 Brayton Cycle." Report: NETL-PUB-21435, 2017.

³ Weiland, N.T., and White, C.W., "Performance and Cost Assessment of a Natural Gas-Fueled Direct sCO2 Power Plant," Report NETL-PUB-22274, 2019.

COE vs. Plant Efficiency Analysis, with CCS (IGCC & NGCC w/ CCS and Allam)

- Direct sCO2 plants w/ Shell gasifiers 20 %**COE** improvement over Shell IGCC system with CCS ^{1,2}
- NG direct sCO₂ cycle design includes thermal integration with ASU intercoolers and 3-stage recuperation train³
 - NG sCO₂ plant HHV efficiency currently 48.2% with 99% carbon capture, with 3% lower COE than baseline NGCC plant with CCS (B31B)
 - Competitive with advanced turbine (Fframe, H-frame) NGCC cases with CCS and EGR

15

NET Power 25 MWe Direct Fired sCO₂ Power Plant

NET Power's 25 MWe Allam cycle based power plant in La Port, TX; (<u>a privately funded project</u>).

Photographs by permission of Net Power, Circa 2017

- Exelon, McDermott, Oxy Low Carbon Ventures, 8 Rivers & Toshiba
- First-fire in May 2019
- Commissioning complete
- Operation underway

Advanced Ultrasupercritical Component (ComTest) Project Update DOE Contract DE-FE0025064

Robert Purgert purgert@energyinohio.org Principal Investigator

Horst Hack hhack@epri.com Technical Project Manager

Quarterly Review Meeting Virtual Meeting – Session #1 March 2, 2021

AUSC Commercialization Roadmap

Technology Readiness Levels				Roadmap to AUSC Demo			
2000	2005 2010	2015		2020	2025		
Materials Evaluation (Nickel Superalloy Focus)	Component Mockup	Steam Loop at Plant Barry. Large forgings & castings		AUSC Component Test (ComTest)	AUSC Demonstrati	ion	
Laboratory TRL 2-3	Proof of concept TRL 4	Component Test TRL 4-5		System TRL 4-7	Overall TRL 8-9		
				Superheater	5		

Recently completed DOE-sponsored projects achieved TRL = 4/5 AUSC ComTest will achieve TRL = 7 (ready for full scale demo)

Desuperheater

Header

Valves

4

4

Tasks Completed in First 15 Years of DOE AUSC Programs

Nominal 43 MWth Gas Fired Heater for the STEP Project

Ref: Techno-economic Analysis for a 10 MW Supercritical CO2 Pilot Plant, July 2015, DOE/NETL-2015/1701

Overview of DOE Energy Systems - Fossil Energy Power Systems

- FE is developing two power cycles based on sCO₂
 - Variations on the recompression Brayton cycle
 - Allam cycle

Summary

- Advanced sCO₂ cycles and AUSC cycles will both depend on advanced materials
- FE has made considerable investment the ComTest consortium to deliver these advanced materials
- The STEP project is designed to demonstrate a pathway to a thermodynamic cycle efficiency greater than 50% and is currently one of the largest customers for the advanced alloys and welding techniques being discussed at this meeting

