

Metallurgical Phenomena Related to the High Temperature Performance of Dissimilar Metal Welds between Austenitic and Ferritic Alloys

Dr. Boian Alexandrov, Dr. Michael Kuper¹ Conner Sarich, Samuel Luther

Welding Engineering Program Department of Materials Science and Engineering *The Ohio State University*

Alexandrov.1@osu.edu

¹ Currently with Elliot Group

DoE SCO2 Technical Review Meeting

Virtual, March 10, 2021

Metallurgical Phenomena in DMWs

Thermophysical Property Gradient

Composition and Chemical Potential Gradient

Compositional Transition Zone Morphology

Phase Transformations and Hardness Gradient

Thermal Fatigue Behavior & Testing

Prediction of Carbide Precipitation Behavior

Alloy	С	Mn	Cu	Si	Ni	Cr	Мо	V	AI	Со	Nb	Fe
P91	0.11	0.4	0.02	0.36	0.06	8.71	0.94	0.195	0.001	-	0.076	Bal
B91	0.10	0.6	0.05	0.25	0.7	9	1	0.2	-	-	0.05	Bal
625	0.02	0.1	0.01	0.14	Bal	21.7	8.5	-	0.1	-	3.8	0.4
617	0.07	0.4	0.09	0.3	Bal	22	8.7	-	1	12	-	0.3
82	0.04	2.8	0.03	0.09	Bal	20	-	-	-	-	2.4	1.5
P87	0.10	1.5	-	0.3	Bal	9	2	-	-	_	1	38

Grade 91 / Ni-base Filler Metal / 347H DMWs

2

Sharp gradients in the dissimilar transition zone

Chemical composition gradient

- Gradient in solidification temperature ranges
 - Epitaxial solidification
 - Partially mixed zones (swirls)
- Reversing austenite-to-martensite transformations

Chemical potential, solubility & diffusivity gradients

• Carbon migration and accumulation, carbide precipitation

Thermal conductivity and heat capacity gradients

- Different temperature gradients in weld metal and HAZ
- Planar growth solidification
- Carbide dissolution in HAZ
- Stabilizing δ-ferrite in ferritic alloy HAZ

Thermo-physical and mechanical property gradients

- Thermal fatigue loading
- Strain concentration in carbon depleted regions

Thermal fatigue cracking in service

Thermophysical Property Gradient

Center for Weldability Evaluation

Center for Weldability Evaluation

Effect of Filler Metal Composition

		Ferrite Area/Fusion
Alloy	Total Ferrite Area (mm ²)	Boundary Length (µm)
625	0.348	30.24
617	0.449	25.53
82	0.247	22.12
P87	0.119	11.37

Chemical Potential Gradient

Thermodynamic & Kinetic Predictions of HAZ Carbon Depletion

 Alloy
 Average Carbon

 Alloy
 Concentration in HAZ (wt. %)

 625
 0.0778

 617
 0.0878

 82
 0.0955

 P87
 0.1290

Carbon vs Ferrite Content in the HAZ

Composition & Property Gradient

Center for Weldability Evaluation

Epitaxial Solidification & Planar Growth

Microstructure Gradient

Reversing Austenite to Martensite Transformation in Dissimilar Transition Zone

Microstructure & Property Gradient

Center for Weldability Evaluation

THE OHIO STATE UNIVERSITY

Reversing Austenite to Martensite Transformation in Dissimilar Transition Zone

After Service

Gleeble[™] Thermal Fatigue Testing of Grade 91 - Alloy82 - 347H DMW

1. Pre-load 2. Heating 3. PWHT 4. Cooling 5. Heating 6. Service Hold 7. Cooling

Gleeble[™] Thermal Fatigue Testing of Grade 91 - Alloy82 - 347H DMW

0

0

Max

5

• Min

10

Thermal Cycle (#)

-----Average

15

20

---- Amplitude

HTSF: full residual stress relaxation during PWHT, full restraint during service **LRS:** large welding residual stresses not relaxed during PWHT, full restraint during service

Thermal Fatigue Susceptibility

Thermal Fatigue (TF) Testing Procedure for High Temperature Alloys

Improved sample restraint leads to TF failures

TF susceptibility criteria:

- Number of cycles to failure
- Sustained imposed mechanical energy (IME) IME: integrated stress – strain curve

DIC local strain quantification

Thermodynamic and Kinetic Simulation of Carbide Behavior

Grade 22 HAZ carbide behavior during temperbead welding

Kinetics of Carbide Precipitation during PWHT

Acknowledgments

Dr. Joshua Burgess and Mr. Rod Vanstone of GE Power Dr. Jorge Penso of Shell