

Capillary-driven Condensation for Heat Transfer Enhancement in Steam Power Plants Project ID: DE-FE0031677 Yajing Zhao, Samuel Cruz, and Evelyn N. Wang Department of Mechanical Engineering, MIT Thomas G. Lestina Heat Transfer Research Inc

Massachusetts Institute of Technology

2

Project Description and Objectives

Institute of

Technology

Motivation

- Steam power plants are responsible for the largest amount of water^[1] withdrawn from U.S. water bodies:
- HTC_{condenser} ↑, power ↑, Q_{consum, water} ↓ Boiler (furnace) Turbine Steam Transmission l ines Transformer Condenser Condenser Cooling Water [1] Dieter, C.A. *et al.*(2018) U.S. DEPARTMENT OF Massachusetts
- Industrial condensers rely on conventional filmwise condensation:

Scalability and robustness remain challenging for dropwise condensers:

Project Description and Objectives

Proposed Concept—Capillary-Driven Thin-Film Condensation

Filmwise condensation with enhanced thermal conductivity & controlled condensate film thickness

- Hierarchical surface consisting of a robust hydrophobic membrane and high thermal conductivity wick
- Vapor transports through membrane pores and condenses at the wick-membrane interface
- Capillary pressure at the membrane-wick interface provides additional driving-force to push condensate from the wick to an exit port for condensate removal

Massachusetts Institute of

Project Description and Objectives

Technology Benchmarking

 Several wicking structures with hydrophobic coatings have been investigated to enhance condensation heat transfer

Challenges

Coupling between driving force (capillary pressure) and viscous resistance

Institute of

Technology

- Non-robust hydrophobic coating
- Non-scalable approach
- Limited to no experimental characterization

[1] Oh, J. *et al.* (2018) [2] Anderson, D. *et al.* (2012) [3] Winter, R. *et al.* (2021) [4] Liu, K. *et al.* (2018)

Project Description and Objectives

Proposed Concept—Capillary-Driven Thin-Film Condensation

Key Advantages

- Decouples driving force $(P_{cap} \sim 2\sigma/r_p)$ and viscous resistance (κ)
- Reduces thermal resistance by constraining condensate film thickness in a high thermal conductivity wick

Massachusetts Institute of

- Improves robustness with robust hydrophobic membrane materials
- Enables potential for scalability

Project Update

Approach

Model Development

Design parameters: <u>Wick</u>: permeability, thickness, porosity, thermal conductivity <u>Membrane</u>: pore size, porosity, thickness, thermal conductivity

Surface Fabrication

- Fabrication of highly defined geometries w/ MEMS
- Fabrication of scalable and robust surfaces w/ commercially available materials

Experiment

- Experimentally characterize highly defined geometries to validate model
- Experimentally demonstrate HTC enhancement w/ scalable surface designs

Modeling capillary-driven condensation

High-Performance Design Utilizing Highly Defined Geometry

- Developed a finite element heat transfer model using COMSOL
 - Utilized well-defined geometry for systematic understanding of physics
 - Performed parametric studies to better understand factors that drive performance

Massachusetts Institute of Technology

- Performed **global optimizations** to select high performance rational designs
- Device geometry

present case: micropillar wick, through-pore porous membrane

Geometry and Fabrication

NATIONAL ENERGY TECHNOLOGY LABORATORY

micropillar wick with a silicon nitride membrane bonded on top

Massachusetts

Institute of

Large-scale fabrication

Imaging of fabricated structure

- Achieved large area
- Qualitatively uniform

••••••••••••••••
•••••
•••••
••••••

Plane view SEM: qualitatively uniform; open pores

Institute of

Large-scale fabrication

Cross section SEM

Developing isotropic etching recipe

Successfully opened wicking space to delay flooding

- Challenges removing material between trenches
- Developed a multi-step recipe to open wicking structure

NATIONAL ENERGY TECHNOLOGY LABORATORY

Multiple coating strategies can change operation

1) Coat the wick and membrane hydrophobic: Easy

2) Coat only the membrane hydrophobic: Difficult

2)

Massachusetts Institute of Technology

Ambient air condensation

Imaging under optical microscope

wick and membrane are hydrophobic

wick hydrophilic; membrane hydrophobic

Massachusetts Institute of Technology

Pure vapor condensation

Challenge with completely hydrophobic structure

- Not clear if nucleation happens on top of membrane or in the wick
- Droplets are both absorbed into structure and pin on the surface
- Wick does not fill completely
- Bursting/flooding droplets pin strongly on membrane

wick and membrane are hydrophobic

Pure vapor condensation

Successful demonstration of capillary-driven condensation

Massachusetts Institute of

- Wick fills completely
 - No dry spots
- Small droplets are absorbed continually
- Surface appears "dry"
- Droplet on pillars are continually absorbed
- Heat transfer measurements ongoing

Massachusetts

Institute of Technology

Project update on scalable approach

INIRG

ΑΤΙΟΝΑΙ

Fabrication of hierarchical Cu condenser

Surface fabrication — diffusion bonding

Three Cu meshes of different size bonded with same Cu foam and hydrophobized: 200/500/1500 mesh size, corresponding to ~80/40/10 µm membrane pore size

Institute of Technology

Fabrication of hierarchical Cu condenser

Surface characterization: integrity of pore geometry

Solution to graphite powder:

Graphite-free sample fabricated by diffusion bonding with ceramic molds

Massachusetts

Institute of

- Pore geometry retained after bonding
- Uniform hydrophobicity validated via condensation under optical microscope
- Small traces of black deposits were found-graphite powders

Fabrication of hierarchical Cu condenser

Surface characterization: permeability measurements

One-dimensional Darcy's Law: $\frac{dy}{dt} = \frac{-\kappa}{\mu\varphi} \left(\frac{-\Delta P_{cap}}{y} + \rho g \right)$ Solution:

$$t = -\frac{Aln(A - By) + By - Aln(A)}{B^2},$$

where $A = \frac{\kappa \Delta P_{cap}}{\mu \varphi}, B = \frac{\kappa \rho g}{\mu \varphi}$

- Permeability κ measured before & after diffusion bonding
- 1E-11m² would be a conservative estimation for κ
- Increase in κ may be due to etched copper oxide

Massachusetts

Institute of

Massachusetts

Institute of

Technology

Modeling of hierarchical Cu surfaces Modeling framework for HTC and flooding prediction

Modeling results hierarchical Cu surfaces

HTC enhancement and flooding regime predicted by model

Model prediction for $T_v = 35^{\circ}C$

Massachusetts

Institute of

Technology

NATIONAL

Experiments

Experimental setup & preliminary testing

- Experimental setup for condensation HTC characterization with industrial-level vapor conditions
- HTC measurements being conducted and will be compared to model prediction
- Flooding/bursting of droplets occurred—attributed to local defects in coating/mesh
 - Design of exit port/channels to guide the condensate flow
 - Application of selective coating/intrinsic hydrophobic membrane to keep the wick hydrophilic

Massachusetts

Institute of

Exploration of reliable & robust surfaces

Exit port design, scalable and robust membranes

Cu foam with microchannels (before diffusion bonding)

Massachusetts

Institute of

Technology

Electrospinning PVDF membrane:

- Intrinsically hydrophobic
- Low cost
- Tunable geometry (e.g., pore size)
- Different porous Cu substrate tested
- Bonding remains a challenge

Preparing Project for Next Steps

Next steps

- Determine if configuration where the top of the membrane and the pore sidewalls is hydrophobic, and where the entire membrane is hydrophobic, are desired configurations
- Develop a superior sample-condenser bonding technique for heat transfer measurements
- Heat transfer measurements of hierarchical copper condenser and microfabricated condenser
- Fabrication of scalable condenser surfaces on tube geometry utilizing gained knowledge

Massachusetts Institute of

Fechnoloav

• 1) bonding intrinsic hydrophobic membrane to wick 2) develop exit port design

Tech to market

- Continue to develop fabrication strategies for scalable structure
- Testing at larger scale—Heat Transfer Research, Inc

End goals of the project

- Scalable and robust capillary-driven condensers for HTC enhancement
- Model framework to guide the rational design of capillary-driven condensers

Concluding Remarks

Summary

- **NET**NATIONAL
 ENERGY
 TECHNOLOG
 LABORATOR
- Successfully micro-fabricated large-area engineered sample and demonstrated our proof-of-concept
 - Successful micro-fabrication of large area structures on silicon
 - Developed selective coating technique to show variation in physics over non-selective configuration
 - Conducted condensation visualization experiments in air and pure vapor ambient
 - Found preferred configuration consists of a hydrophilic wick and a top coated hydrophobic membrane
- Successfully fabricated scalable capillary-driven condensers
 - Hierarchical copper condensers of different geometry were fabricated by diffusion bonding
 - Over 10x HTC enhancement with a subcool up to 4.5 K given by fabricated sample is predicted

Massachusetts Institute of

Technology

- Fabrication of robust and scalable condensers based on electro-spun PVDF
- Ongoing heat transfer characterization

Acknowledgement

We gratefully acknowledge funding support from the National Energy Technology Laboratory (NETL) of the U.S. Department of Energy with Richard Dunst as project manager.

Market Benefits/Assessment

Integrating capillary-driven condensers into existing industry

Techno-economic Evaluation for a typical 950 MW fossil fueled power plant^[1]

Estimated material costs to modify an existing condenser with 23,150 tubes (made of 90/10 cupronickel alloy) with dimensions D_0 =28.6 mm and L=13.4 m are shown below:

- Porous copper powder wick (0.2mm thick)
- PVDF membrane (pore size ~1 µm)
 - Alternative materials: PTFE, PP

Material	Material Cost	Required Amount	Total Cost
Sintered copper powder ($\Phi = 70\%$)	135 [\$/kg]	34963 [kg]	\$ 4.72 Million USD
PVDF membrane	400 [\$/m ²]	27872 [m ²]	\$11.15 Million USD
Fabrication cost (assuming $C_{Mater}/3$)	-	-	\$ 5.29 Million USD
Total	-	-	21.16 Million USD

Massachusetts

Technology

[1] Webb, R.L.(2010)

Market Benefits/Assessment

Porous Cu foam and PVDF membrane modified condensers

Thermo-economic Evaluation for a typical 950 MW fossil fueled power plant^[1]

Item	Plain Condenser	Capillary-driven Condenser	Unit
Boiler heat input Q _h	2,223	2,223	MW
Condenser water T_{in}	20	20	Oo
Condenser water T_{out}	30	30	°C
Condenser saturation temperature	38.95	34.20	°C
Condenser external HTC	8.183	46.127	kW/m ² K
Condenser overall HTC	3.426	5.226	kW/m ² K
Condenser heat rejection/MW	1,273	1,195	MW
Condenser water volume flow rate	30.53	28.66	m³/s
Reduced condenser water flow rate	-	1.87	m³/s
Turbine output $W_{\rm t}$	950	1,028	MW
Increased power output	-	78	MW
Capital value of increased generation	-	7.8E+07	\$/year
Tube modification cost	-	2.12E+07	\$
Simple payback on increased generation	-	0.27	year

Massachusetts Institute of

Technology

[1] Webb, R.L.(2010)

