Co-Gen Wastewater Treatment for Coal-Fired Energy Plants Project

• Type of Contract:
 • DOE Co-Op (DOE/NETL)

• Period of Performance:
 • October, 2018 to March, 2021

• Total Contract Value:
 • $748.8K PLUS $187.2K Cost Share
Project Objectives

• Show clear, economic solution for FGD wastewater treatment supported by detailed analyses and trade studies
 • Review system configuration options
 • Select an optimized solution

• Complete experiments to document the solubility, transport and/or capture of Critical Pollutants of Concern (CPoC) species
 • Liquid and gas phase
 • Information will be essential to guide work on the first objective and determine economic options for CPoC removal
Project Approach

- Innovative process will reduce the net cost of water treatment
 - Process has similar CAPEX to current chemical/biological systems
 - Generate power to offset capital investment and operational expenses
 - Portion of the wastewater stream will be heated and filtered and then used as a working fluid in a turbine
- Verify concept makes economic sense
 - Complete system modeling and economic assessment of options
 - System study and economic evaluation will define the most attractive system configuration
- Address a key implementation risk
 - Investigate additives in the case that some CPoC are not readily separated from the steam stream
 - Complete Filter Testing and Analysis
 - Size/Design/Procure/Fabricate Test System
Proposed System Configuration

- **Heat Recovery**: Gas turbine exhaust heat recovery resembles HRSG, but does not boil wastewater.
 - **HRSG**: 181°F, ~3200 psi, ~470°F

- **Power Generation**: Surplus power (17 MWe net) offsets Fuel and Capex.
 - **Motor Generator**: ~54 MWth, 220 psi, 1750°F

- **Direct Fired Superheater**: ~6 MWth, 240 psi, 780°F

- **Solids Separator**: Fabric filters for low solids loading. Add Cyclones for higher solids loading.
 - **Wastewater**: ~3200 psi, ~700°F, ~300 psi, 418°F

- **Flash Separator**: Concentrates brine (via pressure letdown) before sending to steam generator. Lowers Fuel Consumption.
 - **Brine**: ~5x Conc., 300 psi, 418°F

- **Wastewater Discharge**: Natural Gas IN (60 MWth)

- **Cooling Water**: Clean Water

- **Condensing Heat Exchanger**: Steam Discharge, ~2600 psia, ~675°F
Hardware Assembly

- Test input – simulated or actual FGD water
- Heat water to conditions similar to direct steam generator system
- Filter steam/combustion stream with candle filters as planned
- Evaluate success capturing CPoC
Testing Summary – Simulated FGD Water

• Focused on Effluent Limitation Guidelines from the 2015 Rule
 • Hg & Se - added As, Nitrates, other pollutants in later tests
• Completed 12 simulated water filtering tests
 • Examined three nozzles and three filters
 • Selected filter and nozzle for actual FGD water testing
 • Typically captured >83% of the water and solids (vapor small/not measured)
• Optimized test apparatus through simulated water testing
• Typical TDS results - Before ~27,000 ppm; After ~234 ppm
 • Se meets release criteria
 • Hg does not meet release criteria – very stringent
 • As meets criteria
 • Nitrates higher than release criteria
• Water available for re-use in the facility – reduce fresh water needed
Solids Summary
Broad size distribution good for candle filter
Solids Summary
Particle size analysis by XRD

![Histogram of particle size distribution](Lot 202589-009)
Testing Summary – Actual FGD Water

• Completed 2 tests on AEP produced water and one test on EPRI-1.
 • Utilized a guard bed of HGR carbon to address mercury content in vapor phase.
 • Ran AEP a second time due to a wet filter cake and solids migrating through the filter.

• TDS reduction
 • EPRI-1 6,570 ppm before; 100 ppm after
 • AEP Test 2 – 18,000 ppm before; 240 ppm after

• Critical Pollutants of Concern
 • Se meets release criteria
 • Hg does meet criteria for effluent water
 • Hg HGR carbon treatment for vapor
 • As meets criteria
 • Nitrates met criteria

• Water available for re-use in the facility – reduce fresh water needed
System Performance - CPoC

<table>
<thead>
<tr>
<th></th>
<th>TDS</th>
<th>Se</th>
<th>Hg</th>
<th>As</th>
<th>Nitrates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>After</td>
<td>Initial</td>
<td>After</td>
<td>Initial</td>
</tr>
<tr>
<td>AEP **</td>
<td>20,000</td>
<td>5700</td>
<td>0.180</td>
<td>0.1060</td>
<td>0.00333</td>
</tr>
<tr>
<td>AEP (2)</td>
<td>18,000</td>
<td>240</td>
<td>0.142</td>
<td>0.0039</td>
<td>0.00200</td>
</tr>
<tr>
<td>EPRI_1</td>
<td>6,570</td>
<td>100</td>
<td>0.094</td>
<td><.0025</td>
<td>0.00094</td>
</tr>
<tr>
<td>Req’t *</td>
<td>Not applicable</td>
<td>0.0075 mg/L</td>
<td>.000159 mg/L</td>
<td>0.00598 mg/L</td>
<td>1.3 mg/L</td>
</tr>
</tbody>
</table>

Black = initial values or not applicable/unknown/reference, **Red = does not meet, blue = meets**

* EPA 2015 rule

** Filter breached by liquid – operational issue, not a valid test

- Cr increased in each test, ranged from 0.37-3.09 mg/L vs 0.1 mg/L requirement for EPA drinking water
- Ph ranged from 1.66-2.37, too low to release
Summary of Effluent Results
Mercury Analysis

- Water and solid samples indicate Hg in vapor form as feared/expected.
- EPRI1-1 passed criteria without need for treatment.
- AEP2 passes criteria after treatment with HGR carbon.

<table>
<thead>
<tr>
<th></th>
<th>Synthetic Feed Water, mg/L</th>
<th>Hg Gas Phase No Guard (sorbent), ug/L gas</th>
<th>Hg Gas Phase With Guard (sorbent), ug/L gas</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEP1</td>
<td>0.00333</td>
<td>0.001244</td>
<td>0.0005627</td>
<td>0.54766881</td>
</tr>
<tr>
<td>AEP2</td>
<td>0.00202</td>
<td>0.00158</td>
<td>0.000095</td>
<td>0.94025892</td>
</tr>
<tr>
<td>EPRI1-1</td>
<td>0.000936</td>
<td>0.000102</td>
<td>0.00003</td>
<td>0.70588235</td>
</tr>
</tbody>
</table>
Summary

- Candle filter system captures majority of water contaminants
- TDS reduction to < ~250 ppm
- Critical Pollutants of Concern
 - Se meets release criteria
 - Hg meets criteria
 - Treat vapor with HGR carbon treatment
 - As meets criteria
 - Nitrates met criteria in one case
- Water available for re-use in the facility – reduce fresh water needed - or release
 - Ph is low – need to adjust prior to release
 - Cr is high – leaching from un-passivated tubing?
- Need to complete economic assessment to show viability
Next steps

• Complete analysis of results
• Complete TEA
 • Modify system model to include HGR Carbon addition
• Complete final report
Acknowledgment

• This material is based on work supported by the Department of Energy Award Number DE-FE0031669.
Disclaimer

• This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.