Regional Analysis of Dry Cooling Retrofits on NGCC Using IECM

Haibo Zhai^a and Ed Rubin^b

^a University of Wyoming, Laramie, WY ^b Carnegie Mellon University, Pittsburgh, PA

Contractor Author Legal Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Haibo Zhai¹ and Ed Rubin²

¹University of Wyoming, 1000 East University Ave, Laramie, WY 82071 ²Carnegie Mellon University, 5130 Wean Hall, Pittsburgh, PA 15213

- Estimate the potential water savings benefit of retrofitting dry cooling systems at existing natural gas combined cycle (NGCC) power plants currently using wet cooling towers in a water-stressed (dry/arid) region
- Estimate the cost and cost-effectiveness of such retrofits
- Identify potential shortfalls in regional net generating capacity due to the derating impact of dry cooling retrofits

Project Scope

- Expand a prior study of dry cooling retrofits at coal-fired (PC) power plants to now analyze existing NGCC power plants using wet cooling towers in the study region
- Define the case study region to include three western U.S. states: Arizona, Colorado, and New Mexico
- Evaluate potential reductions in net generating capacity on both an annual and monthly average basis under current conditions

Plants in Arizona	 West Phoenix (2 units) Kyrene (1 unit) Santan (2 units) Desert Basin (1 unit) Harquahala Generating Project (1 unit) 	 Red Hawk (1 unit) Griffith Energy LLC (1 unit) Gila River Power Block 3 (1 unit) Mesquite Generating Station Block 1 (1 unit)
Plants in Colorado	Cherokee (1 unit)Rocky Mountain Energy Center (1 unit)
Plants in New Mexico	 Luna Energy Facility (1 unit) 	

Total = 12 plants and 14 units modeled

Data Attributes and Sources

Category	Parameters	Database(s)				
	Nameplate capacity (gas turbine, steam turbine and the total), online year	National Electric Energy Data System; Energy Information Administration (EIA) Form 860				
Unit attributes	Cooling system type	EIA Form 923				
	Gross and net generation, gross and net heat rates (annual averages)	Velocity Suite				
	Natural gas prices	Velocity Suite				
Monthly unit operating information	Gross and net generation, gross and net heat rates	Velocity Suite				
Ambient conditions	Air dry-bulb temperature, relative humidity, air pressure	National Climatic Data Center				

All data are for calendar year 2017.

Configure and Model Existing Units in Integrated Environmental Control Model (IECM)

 In the Integrated Environmental Control Model (IECM), an existing unit is specified by attributes including unit type, age, nameplate capacity (gas and steam turbines), steam cycle heat rate, net plant heat rate, annual electricity generation, and ambient air conditions.

		Title	Unc	Value	Calc	Min	Max	Default
Configuration: Typical New Plant ~		Number of Gas Turbines		1.66	1			2
Post-Combustion Controls	1	Gross Electrical Output (MWg)		292	[🛛	100	2000	Calc
	1	(See Power Block to set these values.)						
CO2 Capture: None v	(^m	Capacity Factor (%)		40.5]	1e-15	100	75
Water and Solids Management		Plant Location		US Midwest Region	1	Menu	Menu	US Midwe
Cooling System: Wet Cooling Tower		(US Midwest States: IA, IL, IN, KY, MI, MN, I	IO, ND, NE, O	H, SD, WI, WV)	-			
		(See Plant Location in CONFIGURE SESSIO	N to set this v	alue.)				
		Ambient Air Temperature (Dry Bulb Average) (*	F)	77.9		15	100	Calc
		Ambient Air Pressure (Average) (psia)		14.1		12	15	Calc
	₹ Air	Relative Humidity (Average) (%)		31.2		0	100	Calc
		Ambient Air Humidity (Average) (Ib H ₂ O/Ib dry a	ir)	0.006586		0	0.03	Calc
		Water Life Cycle Assessment Enabled?		Yes		Menu	Menu	Yes

Configure and Model Existing NGCC Units with Wet Cooling Tower Systems

Steam Generator Parameters

Title	Unc	Value	Calc	Min	Max	Defau
leat Recovery Steam Generator						
RSG Outlet Temperature (*F)		193		150	500	250
Steam Cycle Heat Rate, HHV (Btu/kWh)		9900	_	6000	1.1e+04	9000
djusted Steam Cycle Heat Rate, HHV (Btu/kWh)		9900		6000	1.5e+04	Calc
Cooling Water Temperature Rise (*F)		20		10	50	Calc
Auxiliary Heat Exchanger Load (*1) (%)		1.41		0	20	Calc
otal Steam Turbine Output (MWg)		121.9		0	2000	Calc
Power Block Totals	-			0	15	Calc
Power Requirement (% MWg)		2		0	15	Calc
*1) % Primary Steam Cycle						

Ambient Conditions

Title	Unc	Value	Calc	Min	Max	Default
Wet Cooling Tower						
Ambient Air Temperature (Dry Bulb Average) (*F)		77.9		15	100	Calc
Air Wet Bulb Temperature (Average) ("F)		59.22		15	100	Calc
Cooling Water Inlet Temperature (*F)		90		50	120	90
Cooling Water Temperature Drop (*F)		20		10	50	Calc
Cycles of Concentration		4		2	20	4
Tower Drift Loss (*1) (%)		0.001		0	0.1	0.001
Auxiliary Cooling Load (*2) (%)		1.41		0	20	Calc
Tower Overdesign Factor (% total load)		0		0	20	0
(*1) % Recirculating Water (*2) % Primary Steam Cycle						
Power Requirement (% MWg)		0.7093		0	15	Calc

Key Results for Existing NGCC Units with Wet Cooling Towers (CY 2017)

Study Unit ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Air dry bulb temp. (°F)	77.9	77.9	77.9	77.9	77.9	64.5	77.9	77.9	77.9	77.9	77.9	63.5	51.4	51.4
Air relative humidity (%)	31.2	31.2	31.2	31.2	31.2	33.2	31.2	31.2	31.2	31.2	31.2	41.3	52.6	52.6
Unit age in 2020 (years)	19	17	18	15	14	18	19	16	18	17	17	14	5	16
Nameplate capacity (MW)	135.6	570	292	622.1	290.2	654.2	646.3	441.6	573.1	691.5	619	650.3	624.8	684.7
Net capacity (MW)	120.6	519.3	284.1	610.5	285	637.9	610.6	432.7	551.6	679.1	608.2	638.7	614.2	637.9
Net plant efficiency (HHV,%)	40.1	42.3	46.0	46.4	45.7	46.7	42.5	47.0	45.8	46.6	48.1	44.6	48.6	40.9
Capacity factor (%)*	21.0	44.5	40.5	43.1	42.0	35.0	19.4	13.7	43.0	33.9	44.8	45.3	57.2	35.7
Net generation (BkWh/yr)	0.222	2.026	1.009	2.307	1.049	1.957	1.037	0.520	2.079	2.015	2.388	2.536	3.080	1.996
Water consumption (gallons/MWh)	320	306	300	357	336	286	350	248	260	322	289	302	215	272

* Based on nameplate capacity

Model Existing NGCC Units Retrofitted with Dry Cooling Systems

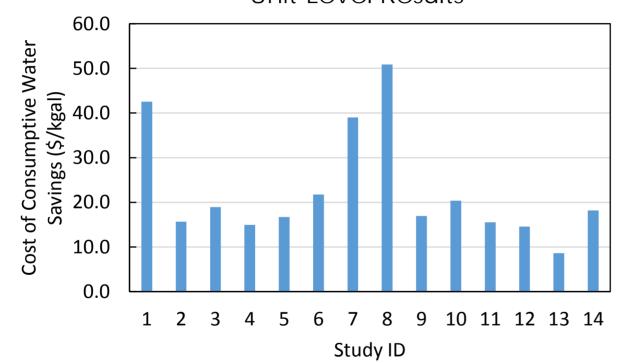
- Replace wet cooling tower with a dry air-cooled condenser (ACC) system
 - Same nameplate capacity and capacity factor as before

	ONFIGURE SESSION:	Plant Design	×
Configuration: <u>Post-Combusti</u> CO ₂ Capture:	<user defined=""> \vee on Controls None \vee</user>	et al la	i 1
Water and Soli Cooling System:	ids Management		
		Note: Options in gray are accessible only after other required	options are sele

Model Existing NGCC Units Retrofitted with Dry Cooling Systems (continued)

- ACC design based on annual average ambient conditions
- ACC capital cost amortized over remaining life of the unit as of 2020 (based on a 30-year NGCC unit life)

					Title Air Cooled Condenser	Unc	Value	Calc	Min	Max	Default
	<u>Title</u>	Unc	Value	<u>c</u> —	Peak Ambient Air Temp (Dry Bulb) (*F)		77.9		15	120	90
					Ambient Air Temperature (Dry Bulb Average) (*F)		77.9		15	100	Calc
Configuration Me	nus				Inlet Steam Temperature (*F)		125.2		100	160	Calc
Condenser Type			NETL ACC	\sim	Fan Efficiency (%)		80		50	100	80
Configuration			A-Frame (60 deg)	\sim	Condenser Plot Area (per cell) (sq ft)		1186		538.2	2691	1186
	Steam In				Steam Orcle Turbine Back Pressure (inches Hg)		3.988		2	8	Calc
					Auxiliary Heat Exchanger Load (*) (%)		5		0	20	Calc
		1			(*) % Primary Steam Cycle						
	Air Cooled Condenser (ACC)				Air Cooled Condenser Power Requirement (% MWg	D	0.9385		0	6	Calc


Key Results for Existing NGCC Units Retrofitted with ACCs (CY 2017)

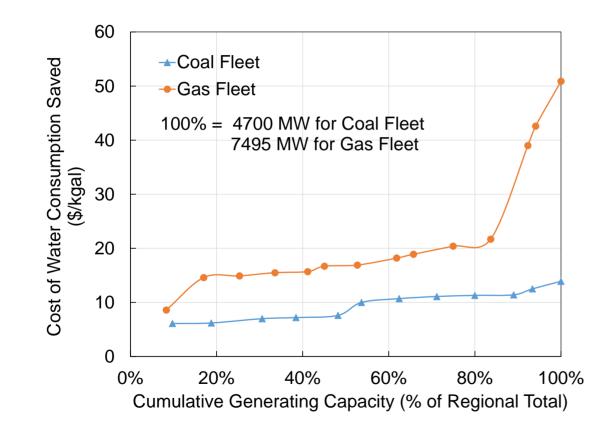
Study Unit ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Nameplate capacity (MW)	135.6	570	292	622.1	290.2	654.2	646.3	441.6	573.1	691.5	619	650.3	624.8	684.7
Net capacity (MW)	119	512.3	280	599.9	280.3	632.4	600.9	427.4	544.8	668.4	599.4	633	612.5	635.9
Net plant efficiency (HHV, %)	39.6	41.7	45.4	45.5	45.0	46.3	41.9	46.4	45.3	45.9	47.4	44.2	48.4	40.7
Capacity factor (%)*	21.0	44.5	40.5	43.1	42.0	35.0	19.4	13.7	43.0	33.9	44.8	45.3	57.2	35.7
Net electricity generation (BkWh/yr)	0.219	1.998	0.9941	2.266	1.032	1.94	1.021	0.5133	2.053	1.983	2.354	2.514	3.071	1.99
Water consumption (gallon/MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Increase in Levelized Cost of Energy (LCOE) (2017 \$/MWh)	13.6	4.8	5.7	5.3	5.6	6.2	13.7	12.6	4.4	6.6	4.5	4.4	1.9	5.0
Percent increase in LCOE **	24.2	13.3	15.9	17.1	17.2	18.3	31.8	29.7	13.5	20.3	14.6	14.4	5.9	13.8
* Based on nameplate capacity	**Relat	ive to pr	e-retrofit,	assuming	g capital	cost of al	l existing	plant equ	ipment is	fully amo	ortized be	efore and	after re	trofit

Cost of Water Savings by Dry Cooling Retrofit*

Unit-Level Results

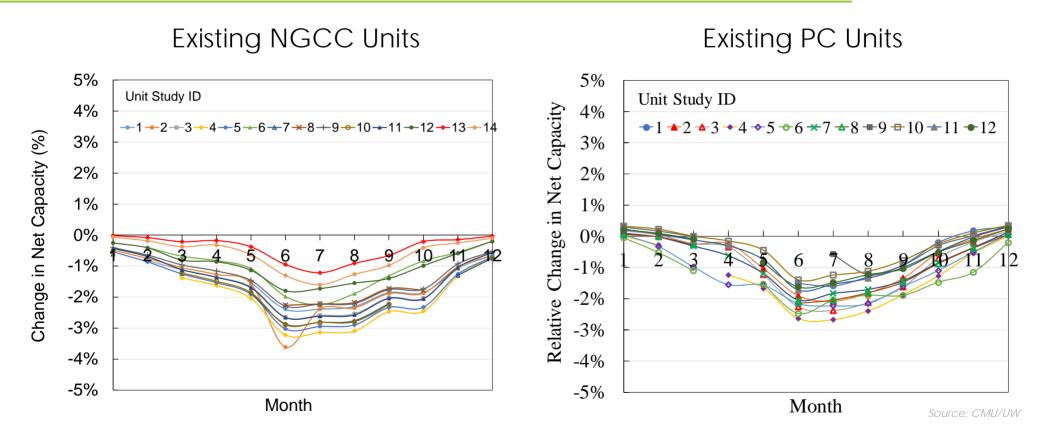
Regional Averages:

- 100% drop-in unit-level water consumption
- \$6.7/MWh (18%**) increase in LCOE
- \$22.5 per thousand gallons of water saved
- Costs increase for difficult retrofits and decrease for higher water prices


**Based on fully amortized plants

* Based on nominal water price of \$1.13/kgal

Water Savings Supply Curves for NGCC and Pulverized Coal (PC) Plants



- The unit cost of water saved at NGCC plants is higher than for PC plants, mainly because of lower NGCC capacity factors.
- Differences in cooling duty, amortization period and other site-specific factors also contribute to higher costs at NGCC units.

Monthly Change in Net Unit Capacity for NGCC and PC Retrofit Cases

Summary of Changes in Net Regional NGCC Capacity with Dry Cooling Retrofits

Average monthly decrease in net regional NGCC capacity:

- 23 MW to 167 MW on an absolute basis, or
- 0.3% to 2.2% on a relative basis
- Largest decreases in capacity occur in June and July
- Annual average decrease in net regional NGCC capacity:
 - 86 MW, or 1.2% of total regional NGCC capacity with wet cooling
 - This is higher than the average decrease of 0.8% for PC units, due mainly to higher steam cycle heat rates at NGCC units

In Summary

NATIONAL ENERGY TECHNOLOGY LABORATORY

- This work has quantified the potential water savings benefit of dry cooling system retrofits at NGCC plants now using wet cooling towers in a water-stressed region.
- Also quantified tradeoffs in terms of higher cost and shortfalls in net generating capacity.
- Together with prior analysis of coal-fired plants, these results can be used to better inform water use strategies and policies for power plants in a water-stressed region.
- Further analysis and additional data are needed to assess impacts for shorter time periods (e.g., daily, hourly).

The authors would like to thank Eric Grol¹, Travis Shultz², Briggs White¹, Marc Turner^{1,3}, and Mark Woods^{1,4} for their support and assistance in performing this work.

¹National Energy Technology Laboratory, 626 Cochran's Mill Rd, Pittsburgh, PA 15236
 ²National Energy Technology Laboratory, 3610 Collins Ferry Rd, Morgantown, WV 26505
 ³NETL Support Contractor, Leidos, 250-C, Curry Hollow Rd, Pittsburgh, PA 15236
 ⁴NETL Support Contractor, KeyLogic Systems, 3168 Collins Ferry Rd, Morgantown, WV 26505

Questions/ Comments

VISIT US AT: www.NETL.DOE.gov

🤊 @NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory

CONTACT: Eric Grol Eric.Grol@netl.doe.gov

