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Background / Motivation

> Large parts of the US are expected to
experience water stress over next two
decades
> Need disruptive technologies to reduce
water usage in one of the largest
consumer of fresh water (wet cooling for
electricity generation)
» Make dry-cooling systems (ACCs) more
effective
- Enhance the low air-side heat transfer
coefficient and reduce footprint
- Mitigate the thermodynamic
limitations on performance when
daytime peak ambient temperatures
are high.

UNIVERSITY o;l@

Cincinnati



Background / Motivation

Impact of limitations due to high

daytime ambient temperature

on dry- or air-cooling in fossil

fuel power plants:

> ACCs are over-sized with a
large initial temperature
difference (ITD); condenser
pressure is correspondingly
higher.

> Increases both capital cost and
operating cost.

> Yields low Rankine cycle
thermodynamic efficiency at
peak period of electricity
demand.
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Technology Innovation
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ACC Performance Enhancement —
Reduce Size of ACC (based on fixed power and pressure drop constraint)
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\ A=d(N, d,, L, A, L)

A = o(fpi, H,, L)

Fixed pressure drop constraint
(fixed heat transfer rate)

o= 10 ) -2t ) )
(fRe2 )PF = (fRe2 )EF

O=(UAJAT,, ~ 4| ATl.:[thNLATl. /dh}Nu
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ACC Performance Enhancement —

Reduce Size of ACC (based on fixed power and pressure drop constraint)
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TES Design and Performance —
Phase-Change Material (PCM) Selection; Salt Hydrates
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TES Design and Performance —
PCM (LINO5-3H,0) Stable Thermal-Cycling Performance
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Lab-Scale (100 kJ) TES Module Design and

Performance
Wireesh  colant o | « TES PCM Encapsulation Matrix

— Low-cost wire mesh fins for PCM channel

M\; SERY A « Coolant Passages

Enhanced fin,
high-surface-
density passages
for high thermal
capacitance PCM
core plates

— Offset fin provides heat transfer
enhancement in liquid passages
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Project Objectives

Develop (design, test, and scale up) a novel transformative air-
cooling system which integrates a PCM-based thermal energy
storage (TES) for pre-cooling of ambient inlet air to the air cooled
condenser (ACC) during peak daytime hours, via a liquid coolant-to-
air pre-cooler heat exchanger (ACHX)

Q

Q

Task 1: Project Management and Planning
> Overall management of the project as per the Project Management Plan -- UC

Task 2: Design and Performance Evaluation of TES System
> Design optimization of TES, Lab testing, and Scale up — UC, Evapco, EPRI
Task 3: Design and Performance Evaluation of Air Pre-cooler
> Design optimization and performance evaluation and Scale up — UC, Evapco, EPRI
Task 4: Technology Demonstration
> Fabrication and testing of pilot-scale system - EPRI
Task 5: Techno-Economic Analysis

> TEAAnalysis — UC, Maulbetsch, Evapco, EPRI //
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Preliminary TES Scale-up & Testing with Air Pre-Cooler
1.0 MJ TES + ACHX — with Air-Side diurnal temperature variations

T o Toem atseveral | 5 TES scale-up (10x scale-up;
T . locations 100 kJ — 1.0 MJ) and
performance testing
- Performance with diurnal
air-side temperature
T. — ‘ T at | variations (system-level
a1 w atsevera prototype performance)
locations
] |_+ Air Pre-Cooling Loop
Mair T
TES Recharging Loop
TAir,max ____________________________________
------------------------------------- ATdiurnal,max
Inlet air — models diurnal temperature variation (Max 106°F, Thir, design
Min 74°F over a two-hour cycle) > Peak period
Heating: 1 MJ over 40 min period; Cooling: 1 MJ over 80 min Tarmin | (tb—t;) hrs /
period; Air Pre-Cooler tube-fin heat exchanger size: ~ 420 W |

(or ~ 450 W, or can be overdesigned for testing purposes)

Total time: 2 hours
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th Air Pre-Cooler

1.0 MJ TES + ACHX — with Air-Side diurnal temperature variations
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