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Water-Energy Nexus

o 83% of electricity in the USA is produced by thermoelectric power plants.

• Fossil-fuel power plant

• Nuclear power plant

o Water is a critical component of thermoelectrical plants 

• Electricity generation 

• Cooling
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U.S. Electricity generation by major energy source
(2019)

Source: The U.S. Energy Information Administration (EIA)
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Alternative Water Resource

o Water scarcity

• Related to Climate change

• Caused a drop in electricity production

oMunicipal wastewater (MWW)

• Widespread availability

• Relatively uniform quality

(Van Vliet et al., 2012)
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Projected decreased water resources for thermoelectrical plants 
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Challenges with MWW

o Metal Pollutions in Cooling water

• Metals introduced from pipe corrosion

• Metals existing in MWW
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Metal pollutions introduced from the pipes

(Li, Chien, Hsieh, Dzombak, & Vidic, 2011)

There is a strong imperative to frequently
monitor heavy metals.
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Challenges with Metal Detection

o Limitations of mature metal detection techniques

• Expensive

• Dedicated staff required

• Grab-sampling required

• Lengthy processing
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The device that could autonomously conduct metal 
measurements is desirable.
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Anodic Stripping Voltammetry (ASV)

o Advantages

• Low-cost

• High sensitivity

• Easy to be miniaturized

• Easy to be automated

o Limitation

• Only ionic metals are ready for ASV detections
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Metals in MWW
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• Complex with natural organic substances

• Bind with inorganic substances

• Absorbed by various components

Important to develop pre-treatment methods which could
release metal ions 

Pb2+

Cd2+

Large organic or inorganic substance
Small organicmolecules
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Methods
Ø Electrode synthesis
Ø Pretreatment Method Investigations
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Electrode Fabrication
o Arsenic detection

• Au-Fe3O4 modified glassy carbon electrode (GCE)
• Increase conductivity and arsenic sorption ability

o Pb and Cd detection

• (BiO)2CO3-rGO-Nafion modified GCE
• (BiO)2CO3 facilitates the preconcentration of Pb and Cd

• rGO increases the conductivity

• Nafion enhances structural stability
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Composite material modified GCE

GCE Au-Fe3O4nano particles
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Pretreatment

o Acidification

• Dissolve inorganic substances

• Precipitate humic acid

o Ultraviolet (UV)/H2O2

• Produce hydroxyl radicals (*OH)
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Results & Discussion
Ø Performances of electrode
Ø Automation
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ASV Performances in DI water
o The response peaks increased linearly with 

increasing concentrations, with well-defined 

stripping peaks observed.

o The limit of detection is very low (i.e., we

could achieve a high sensitivity)

• Pb: 0.24 ppb << (Discharge limit: 2.5 ppb )

• Cd:0.16 ppb << (Discharge limit: 0.7 ppb )

• As: 0.22 ppb << (Discharge limit: 150 ppb )
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0-100 ppb As(III)

0-60 ppb Cd(II)

0-60 ppb Pb(II)
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ASV Performances in MWW
As detections

o ASV could directly detect ~900 ppb As(III) in

MWW without any pretreatment

• As(III) has a high pKa (9.23), which makes it 

very mobile.
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ASV Performances in MWW
Acidification for Pb detections

o Acidification treatment enabled 12.5 ppb Pb

in MWW detected by ASV, while

acidification failed to make Cd detectable.
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Pb in synthetic wastewater Pb in real wastewater

Cd in synthetic wastewater Cd in real wastewater
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ASV Performances in MWW
UV/H2O2 for Cd detection

o UV/H2O2 treatment made ASV successfully 

detect most of 3.5 ppb Cd, while it failed to 

make 12.5 ppb Pb detectable.
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Cd in synthetic wastewater Cd in real wastewater

Pb in synthetic wastewater Pb in real wastewater
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Automation
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Arduino-based hardwater Python-based software



Conclusions
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1.Our nano-material based ASV methods successfully detected all trace As(III)
(i.e., ~900 ppb) in wastewater without pretreatment.

2. Acidification (i.e., adjust pH to 1) pre-treatment methods enabled the detection of
trace Pb (~12.5 ppb) by ASV in wastewater.

3.A UV/H2O2 pre-treatment process enabled the detection of trace Cd (~3.5 ppb)
by ASV in synthetic wastewater. However, ASV only measured 78% of Cd in real
wastewater, and a systematic error was observed. We will solve it via using glass
reactors.

4.The whole process could be automated by integration of open-source
software (Python) and open-source hardware (Arduino).
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