Real Time Monitoring of Selenium Species, Mercury, and Arsenic in Coal-Fired Power Plant Wastewaters

Contract Number DE-SC0020865
10 May 2021

Prepared by:
Robert De Saro, Joe Craparo - ERCo
Carlos Romero, Arup Sengupta, Zheng Yao – Lehigh University

Prepared for:
National Energy Technologies Laboratory
Phase I STTR Project
Highlights to Date

- Detected the Following
 - Se – 10 ppb
 - Hg – 0.03 ppb
 - As – 6.4 ppb
- Expect to Reduce These in Our Phase II Work
Team

• Energy Research Company
• Lehigh University
• Electric Power Research Institute (Phase II)
ERCo Description
ERCo

- R&D Company founded 1991
- Laser Diagnostics
- Industrial Applications
- ERCo is at the Forefront of LIBS Technology
- Formed Joint Venture, Melt Cognition, for Commercial Sales of LIBS and AIM to Metals Industry
What We Do

- Industrial Project Development
- Aluminum Industry
 - OnSpec
 - VFD Development
 - Aluminum Integrated Minimill
- Coal Fired Power Plants
 - LIBS for Coal Properties
- Fully Equipped Laser Spectroscopy Laboratory
- Expertise in Plasma Dynamics
Sample Projects
OnSpec for Molten Metals
LIBS for Coal Analysis
LIBS Installation

- 2 Systems installed side-by-side over 2 conveyors
- Systems automatically detect when coal is flowing and begin measuring
OnSpec for Glass Forming Compounds

- Los Alamos National Laboratory
- Used to control the vitrification of nuclear waste
Lehigh University – Energy Research Center

- Established in 1972, the ERC main focus has been on fossil-fuel electric power generation.
- Involved in both fundamental and applied energy research.
- Current program orientation: Power generation, energy efficiency, emissions reduction, renewable energy, carbon capture, cross-cutting technologies, water-energy nexus, energy storage.
- Name branded in the power industry and with aligned funding agencies.

Research Funding Sources:
- Electric Utility Companies, Organizations
- Equipment Manufacturers
- U.S. Department of Energy (DOE)
- U.S. Environmental Protection Agency (EPA)
- International Organizations
Instrument and Business Objectives

• Measure the following in near real time and in-situ
 • Se (IV)
 • Se (VI)
 • Total Se
 • Hg
 • As

• Meet Current and Proposed EPA Regulations

• Clean Up Wastewater Sufficiently to Minimize Instrument Maintenance.

• Application – Wastewaters
 • Coal Fired Power Plant Wastewater
 • Industrial Wastewater
 • Drinking Water
Summary of the Final Rule: VIP

- VIP for FGD Wastewater Direct Dischargers
 - *Technology Basis*: Membrane Filtration Systems
 - *Limitations*:

<table>
<thead>
<tr>
<th>Pollutant or pollutant property</th>
<th>Maximum for any 1 day</th>
<th>Average of daily values for 30 consecutive days shall not exceed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic, total (ug/L)</td>
<td>5</td>
<td>NA</td>
</tr>
<tr>
<td>Mercury, total (ng/L)</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Selenium, total (ug/L)</td>
<td>10</td>
<td>NA</td>
</tr>
<tr>
<td>Nitrate/nitrite as N (mg/L)</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Bromide (mg/L)</td>
<td>0.2</td>
<td>NA</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>306</td>
<td>149</td>
</tr>
</tbody>
</table>
Summary of the Final Rule: FGD

- FGD Wastewater BAT/PSES
 - BAT – Best Available Technology Economically Achievable
 - PSES Pretreatment Standards for Existing Sources
 - Technology Basis: Chemical Precipitation (CP) followed by Low Hydraulic Residence Time Biological Reduction (LRTR)

- Limitations:

<table>
<thead>
<tr>
<th>Pollutant or pollutant property</th>
<th>Maximum for any 1 day</th>
<th>Average of daily values for 30 consecutive days shall not exceed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic, total (ug/L)</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>Mercury, total (ng/L)</td>
<td>103</td>
<td>34</td>
</tr>
<tr>
<td>Selenium, total (ug/L)</td>
<td>70</td>
<td>29</td>
</tr>
<tr>
<td>Nitrate/nitrite as N (mg/L)</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Experimental Results
<table>
<thead>
<tr>
<th></th>
<th>Achieved Measurement (ppb)</th>
<th>Achieved Concentration (ppb)</th>
<th>Actual Limits of Detection (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>250</td>
<td>39</td>
<td>6.4</td>
</tr>
<tr>
<td>Hg</td>
<td>1</td>
<td>36</td>
<td>0.028</td>
</tr>
<tr>
<td>Se</td>
<td>250</td>
<td>23</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Arsenic Calibration

![Graph showing arsenic concentration vs signal strength]
Acknowledgment

- This material is based upon work supported by the Department of Energy Award Number DE-SC0020865
Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."