An Effective Quality Assurance Method for Additively Manufactured Gas Turbine Metallic Components via Machine Learning from In-Situ Monitoring, Partscale Modeling, and Ex-Situ Characterization Data

Presented to: NETL –UTSR Review Workshop 2021 DOE NETL UTSR Program Award: DE-FE0031774 Program Manager: Mark C. Freeman

PI: Dr. Xiayun Zhao Co-PIs: Dr. Albert To (Pitt), Dr. Richard Neu (GaTech)

Department of Mechanical Engineering and Materials Science University of Pittsburgh November 10, 2021

Project Objective

- <u>Primary goal</u>: To develop a cost-effective quality assurance (QA) method that can rapidly qualify laser powder bed fusion (LPBF) processed hot gas path turbine components (HGPTCs) through a machine learning framework, which would assimilate in-situ monitoring and measurement, ex-situ characterization, and simulation data.
- <u>Target application</u>: Use the developed QA tool to qualify advanced HGPTC produced by LPBF in Inconel 718.

Project Structure - Research Tasks and Organization

An Effective Quality Assurance Method for Additively Manufactured Gas Turbine Metallic Components via Machine Learning from In-Situ Monitoring, Part-scale Modeling, and Ex-Situ Characterization Data

Research Task Plan (3 years)

SWANSON Department of Mechanical Engineering & Materials Science

Progress Review for Q1-Q8 (10/01/2019 - 09/30/2021)

PI Zhao

Task 2.1 Develop an in-situ monitoring and measurement system which consists of the following two subsystems

Task 2.1.1: In-situ meltpool (MP) temperature monitoring & measurement

- \checkmark 1. Developed and validated meltpool temperature
- ✓ 2. Completed big data analytics for monitoring the printing of five fatigue bars. Fatigue testing (Co-PI Neu) of the five bars will provide a reference for testing the upcoming printed turbine blade coupons.

Task 2.1.2: Develop an in-situ off-axis layer monitoring system

- ✓ Algorithms for registering MP locations using off-axis and on-axis camera have been developed.
 □ Need to correlate the derived spatial profiles of meltpool signatures to ex-situ characterized layer-
- specific anomalies.

Progress Review for Q1-Q8: 10/01/2019 - 09/30/2021)

PI Zhao

Task 2.4 Establish a QA metadata package by machine learning of simulation and in-situ/ex-situ data

<u>Task 2.4.1</u>: Build a database to log and consolidate multi-source data

 \checkmark Set up a NAS (network-attached storage) system for the project data storage, sharing and analytics.

✓ Installed the NIST AMMD software on our lab computer

Task 2.4.2: Develop machine leaning algorithms to establish correlations of processstructure-properties

- ✓ Supplement data computing resource granted (data storage, GPU and AI-GPU allocations) by XSEDE
- ✓ Received NSF XSEDE's data & computing resource allocations on Pittsburgh Supercomputing Center Bridges-2 via two grants (XSEDE Awards: MCH200015 & MCH210015), paving the way for our data processing and machine learning tasks
- Transfer and store all-hands data on PSC Bridges-2 Platform

STWIP (Single-camera Two-Wavelength Imaging Pyrometry): Objectives

- Develop a cost and data effective, compact Single-camera two-wavelength imaging pyrometry (STWIP) method as opposed to a traditional Two-camera system.
- Develop a continuous melt pool monitoring system for practical printing scenarios
- Develop a robust and modular monitoring system and methodology for specifically monitoring the melt pool temperature and morphology
- Provide the AM community with the extensive datasets for LPBF based metal AM and help develop an integrated machine learning framework for correlating melt Pool and part properties

STWIP (Single-camera Two-Wavelength Imaging Pyrometry): System Setup

ACD 1-2: Achromatic Doublets; 11-2: Irises; PBS: Polarizing Beamsplitter. SWANSON

ZXY Intelligent Precision - Advanced Manufacturing (ZIP-AM) Laboratory

Department of Mechanical Engineering & Materials Science

7

Our STWIP Measurement Performance

Accuracy: >90% for all the tested cases, projected to be >95% for a real test case

Repeatability:
 >95% for all the test

>95% for all the tested cases, projected to be >98% for a real test case

• Uncertainty:

The relative uncertainty in temperature evaluated from our system is < 2.801%, which is the maximum relative uncertainty of the system evaluated at $I_{12} = 2$ (very uncommon in typical print scenarios).

Remarks / Recommendations

- STWIP temperature measurement performance significantly depends on the following factors to obtain intensity values and intensity ratios with desired accuracy and precision.
 - The two-wavelength MP image acquisition (e.g., wellaligned optical setup, proper spectral sensitivity of camera)
 - The image transformation also plays a crucial role in accurately evaluating the intensity ratio.
- The temperature uncertainty U_T decreases as A₁₂ increases, indicating a direction of improvement to design a favorable optics system with higher A₁₂.
- STWIP is likely to possess even better measurement capability given a more capable validation approach and experimental setup that can overcome the EOS machine constraints

Department of Mechanical Engineering & Materials Science

STWIP Application Demo: Monitor Meltpool during LPBF of 5 Fatigue Specimens

Multiple sets of experiment were conducted.

E.g., in one experiment as shown, a complete build of five fatigue bar samples designed per ASTM standards

- **Data Acquisition and Storage**: Each fatigue bar print time is approximately 14.4 s and each fatigue bar print is separated by 0.3s. Each printed layer's video data is divided into five segments of each fatigue bar's meltpool image data.
- Data Processing and Analytics: The data processing is in progress. From the intensity monitoring of each layer, we will extract all the key features including each meltpool's temperature profile, size, shape, and location, as well as hatching pattern for each print layer.

Fatigue print layout on the EOS console

Snapshot of the fatigue bar print

Printed fatigue bar samples (numbered)

ZXY Intelligent Precision - Advanced Manufacturing (ZIP-AM) Laboratory

Department of Mechanical Engineering & Materials Science

STWIP Application Demo: Monitor Meltpool during LPBF of 5 Fatigue Specimens

- We completed a batch of five fatigue bars on 12/17/2020. Both on-axis and off-axis data for this print was collected
- The print parameters were: Laser power 285W, Scan speed 960 mm/s.
- Off-axis data was acquired at 1000fps and on-axis data was acquired at 30,000fps at 128x48px resolution

STWIP Application Demo: Monitor Meltpool during LPBF of 5 Fatigue Specimens

Data Analysis:

For the first time we demonstrated a large-scale continuous data monitoring for up to 50 print layers. Each print layer elapsed 72 seconds with approximately 2.2 million images in each layer. Over 1 billion images were monitored and processed.

Results: The melt pool (MP) metrics obtained from this monitoring are

- MP intensity
- MP average temperature
- MP temperature profile
- MP area
- MP shape (ellipticity)
- MP relative location shifting on sensing plane

STWIP Application Demo: Result #1: Two-wavelength Melt Pool Intensity Profile

SWANSON

Department of Mechanical Engineering & Materials Science

ZXY Intelligent Precision - Advanced Manufacturing (ZIP-AM) Laboratory

STWIP Application Demo: Result #2: Average MP Temperature

ayer Number

Department of Mechanical Engineering & Materials Science

ZXY Intelligent Precision - Advanced Manufacturing (ZIP-AM) Laboratory

STWIP Application Demo: Result #3: Time-resolved MP Temperature Profiles

Department of Mechanical Engineering & Materials Science

Figure: (a) Schematic showing the MP temperature measurement locations. B indicates Beginning, M indicates Middle portion and E indicates the End portion of the Reduced Section also referred to as Neck region (b) Beginning, (c) Middle and (d) End Neck region's MP temperature profile measured by the developed in-situ system for Layer 14 in a test sample, temporally separated by 1ms.

SWANSON

ZXY Intelligent Precision - Advanced Manufacturing (ZIP-AM) Laboratory

STWIP Application Demo: Result #4&5: MP Area and Shape (Ellipticity) Profiles

STWIP Application Demo: Result #6: MP Image shifting on the Camera Sensor

ZXY Intelligent Precision - Advanced Manufacturing (ZIP-AM) Laboratory

STWIP Application Demo: Result #6: MP Image shifting on the Camera Sensor

PI

SWANSON Department of Mechanical Engineering & Materials Science

Spattering Porosity

200W_1m/s_1.5 cm high

 $200W_1m/s_5$ cm high

Simulation Flowchart

Chen, Hui, et al. Spattering and denudation in laser powder bed fusion process: multiphase flow modelling. Acta Materialia (2020).

Spattering Modeling

Time = 0.402

Velocity along Z direction of small particles can reach to 6 m/s !!

Spattering Modeling

Denudation

Melt pool simulation with falling spattering particles

Particle attached to bead

Particle attached to bead

Unmelted particle trapped within bead

Summary

- Uni-directional coupling simulation is developed by Flow-3D DEM to study the spattering and denudation during laser welding
- Coupling simulation is performed to study the interaction between moving laser, powder bed and spattering powder particles
- Two pore formation mechanisms are found by simulation and experiments:
 - Spattering particle falls into melt pool and remains un-melted
 - Spattering particle attached to the melt pool bead

Georgia Tech

CREATING THE NEXT

An Effective Quality Assurance Method for Additively Manufactured Gas Turbine Metallic Components via Machine Learning from In-Situ Monitoring, Part-scale Modeling, and Ex-Situ Characterization Data

DOE - University Turbine Systems Research (UTSR)

PI: Xiayun Zhao (University of Pittsburgh) co-PI: Albert To (University of Pittsburgh) co-PI: Richard W. Neu (Georgia Tech)

Project Schedule and Milestones

Task Name		2020			2021				2022			
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Task 2.3 Ex-situ inspection of porosity via X-												
ray micro computed tomography												
Milestone E						٠						
Task 3.1 Perform post-build inspection using												
2D metallurgical sections												
Milestone J								٠				
Task 3.2 Determine fatigue performance of												
each processing pedigree												
Milestone K				•								
Milestone L									٠			
Task 3.3 Characterize fatigue fracture												
behavior to identify critical defect features												
Milestone M							•					
Task 3.4 Develop a hybrid data-driven and												
physical structure-fatigue model												
Milestone N												•
Decision Point 4: integrate fatigue data								•				

Task 2.3	E – Porosity measured in test samples made by different process parameters	6/30/2021	X-ray micro CT of porosity
Task 3.1	J - Post-build images acquired	09/30/2021	Optical micrographs, SEM images in data management system
Task 3.2	K - Fatigue test protocols established	09/30/2020	Fatigue testing workflow documented
Task 3.2	L - Fatigue data acquired	12/31/2021	Fatigue data in data management system
Task 3.3	M - Critical defect features identified	06/30/2021	SEM images with report
Task 3.4	N - Structure-property model established	09/30/2022	Optical micrographs, SEM, fatigue tests, report

Task 3.1: Perform post-build inspection using 2D metallurgical sections

- The heat treatment protocol for all fatigue specimens was established as a direct age procedure involving two steps: (8 h 720°C/FC + 8 h 620°C/AC)
 - This direct age heat treatment was established specifically to nucleate and grow the γ' and γ'' strengthening phases without drastically affecting microstructure on a large scale
- Preliminary EBSD analysis (Build direction = z) showed only minor microstructural change due to heat treatment

Task 3.2: Determine fatigue performance of each processing pedigree ECP RT Original Geometry

 Used NASGRO fatigue crack growth prediction software to estimate fatigue life of forged IN718 aged with same heat treatment with varying sizes and types of flaws at RT and at 511-565°C

CornerCP 511-565C Original Geometry

Task 3.2: Determine fatigue performance of each processingpedigree

- HCF testing complete for samples 1-1, 1-2, 1-3, 2-1, 2-2, and 2-3, with a max stress of 500 MPa, R = 0.1 at 20 Hz and RT. Shown below is how the experimental life values compare to the CCP (center crack panel) NASGRO fatigue life predictions
- Results thus far suggest that the flaws that lead to fatigue crack initiation are between 10-50 μm if the fatigue strengths of these additive components can be directly compared to a forged dataset

CREATING THE NEXT

Sample

1-1

1-2

1-3

2-1

2-2

2-3

Initial HCF Results compared to CCP Nasgro Predictions

Task 3.3: Characterize fatigue fracture behavior to identify critical defect features.

 Post-mortem fracture surface SEM images and digital microscope scans of sample 1-1 (6.89M cycles) vs. 1-3 (1.17M cycles)

Task 2.3: Ex-situ porosity characterization with micro X-ray CT

- The original geometry used in builds 1 and 2 was too large to have sufficient xray penetration in the Zeiss Metrotom 800 130 kV
- A reduced gauge section geometry was designed with a thinner cross section in order to allow for better xray penetration
- The corresponding pixel intensity histograms next to each geometry show the differentiation between the air (left) and IN718 (right) peaks with the reduced gauge geometry demonstrating better peak separation which corresponds to ability to differentiate a pore from the surrounding material

Task 3.2: Determine fatigue performance of each processingpedigree

- Ten sample walls corresponding to the process conditions of sample 6-15 have been heat treated using (8 h 720°C/FC + 8 h 620°C/AC)
- Each wall is being sectioned into various reduced gauge section specimens with heights corresponding to in-situ monitoring data
- Each specimen will undergo XCT to characterize the internal porosity and correlate to anomalies detected in-situ
- Specimens will be tested at 538°C using similar HCF parameters as previous samples, while others will be tested in creep-fatigue

Sample #	Process Regime	Power (W)	Scan Speed (mm/s)	Hatch spacing (µm)	Volumetric Energy Density (J/mm ³)
6	Transition regime	300	1000	110	68
7	Keyhole regime	350	1000	110	80
8	Keyhole regime	200	500	110	91
9	Keyhole regime	250	500	110	114
10	Keyhole regime	300	500	110	136
11	Conduction regime	200	1000	80	63
12	Conduction regime	200	1000	120	42
13	Keyhole regime	250	500	80	156
14	Keyhole regime	250	500	120	104
15	Conduction regime	200	1500	110	30

Products (10/2019-Present)

Journal Publications (2)

- 1. Vallabh, C.K.P. and X. Zhao, *Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion*. **3D Printing and Additive Manufacturing**, 2021.
- 2. Qian Chen, Yunhao Zhao, Seth Strayer, Yufan Zhao, Kenta Aoyagi, Yuichiro Koizumi, Akihiko Chiba, Wei Xiong, Albert To. *Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment*. *Additive Manufacturing*. 2020.

Conference Papers/Presentations (3)

- [invited talk] X. Zhao, "Combined in-situ monitoring of meltpool, powder layer, and part topography for laser powder bed fusion (LPBF) based metal additive manufacturing", Materials Science & Technology 2021, Columbus, Ohio, October 19, 2021.
- Q. Chen, S. Strayer, A. C. To, "Pore formation in laser powder bed fusion Inconel 718 through multiphysics modeling", Materials Science & Technology 2020, Virtual, November 2-6, 2020
- 3. Vallabh, C.K.P., Y. Xiong, and X. Zhao. *In-situ Monitoring of Laser Powder Bed Fusion Process Anomalies via a Comprehensive analysis of off-axis Camera Data*. in *Proceedings of ASME 2020 International Manufacturing Science and Engineering Conference*. 2020. Cincinnati, Ohio, USA.

Inventions (1 Patent Application)

 Zhao, X., and Vallabh, C.K.P. (USPTO 17/015,062, filed on September 8, 2020) Systems and Methods of Adaptive Two-wavelength Single-camera Imaging Thermography (ATSIT) for Accurate and Smart in-situ
 Process Temperature Measurement during Metal Additive Manufacturing (University of Pittsburgh).

Dissemination to Communities of Interest

Time	Event & Venue	Primary Audience	Activity and Impact
11/2019	SciTech Exhibition at Carnegie Science Museum	K-12 Children	PI Zhao's group demonstrated metal 3D Printing and Computer Vision based monitoring technologies
03/2020	Women in 3D Printing – Pittsburgh Chapter Workshop at Pitt	Industry partners, University students	PI Zhao gave a presentation on "Additive Manufacturing Qualification" introducing part of this project research and results.
07/2020	ASPE (American Society of Precision Engineering) Summer Topical Workshop on Additive Manufacturing	ASPE members, including University and National Lab Researchers and industry attendees across the world	PI Zhao introduced and acknowledged this DOE NETL sponsored research project on in- situ monitoring and qualification of metal AM
05-06/2021	Pittsburgh Science and Technology Academy	Grades 6-12	PI Zhao presented two webinars on "Additive Manufacturing and Metrology" to junior-high school students for increasing their knowledge and interest in STEM.

PITT

Acknowledgement

- DOE NETL UTSR Program (Grant Number: DE-FE0031774)
- Project Manager: Mark C. Freeman
- University of Pittsburgh Swanson School of Engineering
- Co-PIs: Prof. Albert To (Pitt), Prof. Richard Neu (GaTech)
- Industry Partners: Turbine Manufacturer, ANSYS

Department of Mechanical Engineering & Materials Science