Center for Advanced Turbomachinery and Energy Research Vasu Lab

Fundamental Experimental and Numerical Combustion Study of H₂ Containing Fuels for Gas Turbines

PI: Prof. Subith Vasu

Co-PIs: Prof. Artem Masunov¹, Dr. Scott Martin², Prof. Daniel Banuti³, Prof. Robert P. Lucht⁴ ¹University of Central Florida, Orlando, FL ²Embry-Riddle University, Daytona Beach, FL ³University of New Mexico, Albuquerque, NM ⁴Purdue University, West Lafayette, IN FE0032072

> PM: Matt Adams UTSR Meeting, Orlando, FL, 10/22/2021 Contact: <u>subith@ucf.edu</u>

Introduction

• Some major challenges involved in hydrogen containing fuel combustion/ combustor development

• Fundamental tools and knowledge must be advanced in order to improve or design new combustion chambers

Mixtures of Focus

P

• Various H₂ fuel combustors that are being developed by various OEMs

		Туре	Notes	TIT ⁰ C [⁰ F] or Class	Max H ₂ % (Vol)		
SOLIN	\$	Diffusion	N2 Dilution, Water/Steam Injection	1200~1400 [2192~2552]	100	Non-premixed combustor	
	Ē	Pre-Mix (DLN)	Dry	1600 [2912]	30	N2 dilution, water/ steam	
	Σ	Multi-Cluster	Dry/Underdevelopment - Target 2024	1650 [3002]	100	injection → Efficiency penalty with	
SE		SN	Single Nozzle (Standard)	B,E Class	90-100	steam.	
	Е	MNQC	Multi-Nozzle Quiet Combustor w/ N2 or Steam	E,F Class	90-100		
	ן פ	DLN 1	Dry	B,E Class	33		
		DLN 2.6+	Dry	F,HA Class	15		
		DLN 2.6e	Micromixer	HA Class	50		
	ns	DLE	Dry	E Class	30		
Siemei	nei	DLE	Dry	F Class	30		
	en	DLE	Dry	H Class	30		
	2	DLE	Dry	HL Class	30		
Ancoldo	0	Sequential	GT26	F Class	30		
	ald	Sequential	GT36	H Class	50	Premixed type burners	
	ns	ULE	Current Flamesheet [™]	F, G Class	40		
	A	New ULE	Flamesheet [™] Target 2023	Various	100		

Current and near-term capabilities of OEMs for H2 containing fuel fired gas turbines (Ref: D. Noble et al., "Journal of Engineering for Gas Turbines and Power, 2020, doi: 10.1115/1.4049346)

- There are premixed, non-premixed, and also heavy N₂ diluted combustion strategies are in practice.
- Lean to Rich $(H_2/NG/NH_3)$ mixtures in N_2 dilutions are primary interest

Team Co-ordination

Fundamentals of Focus (Chemical Kinetics)

Fundamentals of Focus- NOx formation during H₂/NG combustion

 Chemical Kinetics of H₂ containing fuels is being studied approximately from the past two decades. However, discrepancy in the models still exists.

Natural Gas Composition Variability

CO (black traces) and NO (red traces) formation time-histories from two recent NOx literature mechanisms, CRECK and Glarborg. Considerable differences can be seen \rightarrow need new experimental data for validation. Mixture: 80% NG (90% CH₄/10% C₂H₆), 20% H₂, phi=0.6 in air, 20% N₂ dilution.

Fundamentals of focus– Flame Speeds of H₂/CH₄/Natural gas

ATER ing to the energy needs of society

Experimental Ignition Delay Time data at ~ 2 atm, phi=1.0 (50% NG/ 50% H₂) and (50% NH₃/ 50% H₂) (Experiments performed in Vasu's lab at UCF). UCF model is work in progress.

- Chemical Kinetic models need improvement
- Reasons for the limitations of existing kinetic models are in the next slide

Clearly, this shows the uncertainty in predictions by the current state-of-the-art chemical kinetic models. This is because all these models were developed based on experimental results with lower concentrations of NH_3 (NH_3 as an impurity), and validation targets with experiments at higher concentrations are necessary when NH_3 is intended to be used as a fuel or fuel additive.

Chemical Kinetics:

- But here are the limitations of the existing hydrogen fuel kinetics:
 - ✓ Not validated <u>against CO and NOx time histories</u>
 - \checkmark Not validated against <u>rich mixtures</u>
 - ✓ Not validated against <u>high-fuel loadings</u>
 - ✓ Not validated against <u>high N_2 dilutions</u>
- Thus, we are performing shocktube and laser speciation experiments to generate data to validate chemical kinetics
- Improve existing detailed kinetics if needed
- Shocktube, Flame speed, and Chemical kinetic model improvements will be done at the UCF

Fundamentals of Focus- Laser species measurements

CO time history measurements taken at the UCF near 20atm:

• UCF has significant experience in experimentally determining species time histories and modifying chemical kinetics

Experimental Plan for Shock Tube Experiments:

Mixt.	Vol. % of H ₂	Diluents	Measurement s	Applicable to the OEM Combustors	Need for the study (additional details in the Merit Review Criterion Discussion)
H ₂	90-100	N ₂	NO	GE's MNQC; MHPS Multi-Cluster, Diffusion	Data not available in the literature
NH ₃ -H ₂	10-90	No dilution	NO, IDTs	-	Current kinetic models not suitable at high-fuel loading; Models not validated with time resolved NOx data; H ₂ -NH ₃ are not studied
H ₂ -NG	10-90	No dilution	CO, NO, IDTs	MHPS Pre-Mix; GE's DLN 1, 2.6+, 2.6e; Siemens DLE (E- HL class) Ansaldo Sequential, ULE	Current kinetic models are not suitable high-fuel loading conditions; Models not validated with time-resolved NO and CO data; Rich mixture for axial staging are not studied

Experimental Plan for Flame Speed Experiments:

Mixt.	Targeted Measurements	Table 1 OEM Combustors	Need for the study (additional details in the Merit Review Criterion Discussion)
H ₂ -NG	Laminar flame speed;		Flame speed data not
(10-90% Vol % H ₂)	Instability in expanding flame		available at high-fuel loading conditions;
		MHPS Pre-Mix;	instability help to
		GE's DLN 1, 2.6+, 2.6e;	quantify influence of
		Siemens DLE Class E-HL; Ansaldo's Sequential, ULE	preferential diffusion
NH ₃ -H ₂	Laminar flame speed;		Flame speed data not
(10-90% Vol % H ₂)	Instability in expanding flame		available at high-fuel
			loading conditions;
			instability help to
			quantify influence of
			preferential diffusion

• These flame speed experiments will be used for chemical kinetic model development and to develop other necessary correlations to use in combustor designs.

Vasu Lab Facilities for H₂/NH₃/Natural Gas Blends

2 Shock Tubes – realistic GT conditions with H₂/NH₃ permits

Capabilities

•

- High-Pressure Combustion up to 1000 bar and autoignition and emission species Measurements.
- Toxic impurities NOx, SOx, H₂S, and syngas
- Hydrogen or ammonia combustion with impurities
- Synthetic and biofuels
- Lasers for studying NOx formation routes

ATER ing to the energy needs of society

- High-Temperature Thermomechanical Response and Surface Chemistry of Novel Materials
- High -Pressure and -Temperature Molecular Spectroscopy Data for the Development of State-of-the-Art Non-Intrusive Optical Diagnostics

Chemical Kinetic Modeling

Previous Collaborative Accomplishments

- <u>Aramco 3.0-</u> most comprehensive natural gas mechanism
- <u>UCF model for oxy-combustion SCO2-</u> most accurate model used by industry (GE, SWRI, Hanwha, KEPCO, CRAFT Tech) and DOE (NETL, NREL)
- JetSurF model- For jet fuel combustion used by OEMs

Laser and Optical Diagnostics

UCF Shock Tube Laser Diagnostics

Flame Speed

Fundamentals of Focus (Reduced Chemical Kinetics)

Reduced Chemical Kinetic Models for CFD :

- Reduced mechanisms for industrial use:
 - Existing chemical kinetic reduction models <u>do not account</u> <u>turbulence-chemistry interactions</u>
 - ✓ We use inhouse Premixed Conditional Moment Closure Model (PCMC) from ERAU to investigate turbulence and chemistry interactions and develop reduced kinetic models based on that

ALER ing to the energy needs of society 16

Fundamentals of Focus (Counter Flow Flame Studies)

Relation between NOx and Flame strain

Figure adopted from **NETL online** publication Gas Turbine Handbook: Combustion Strategies for Syngas and High-Hydrogen Combustion; and J. P. H. Sanders, J. Y. Chen, and I. Gökalp, "Flamelet-based modeling of NO formation in turbulent hydrogen jet diffusion flames

- Strain beyond certain extent can reduce the NOx formation.
- We perform these studies experimentally
- Purdue (Prof. Lucht) is performing this task

Fundamentals of Focus (Rapid Tools for Estimating H₂ Containing fuel Combustion Characteristics, e.g., Tools for Flashback Prediction)

H₂ can diffuse much faster than heat (Le \neq 1)

- H_2 diffusion play can play a role in boundary layer flash back
- Including detailed multicomponent in combustion codes to predict flash back

Fundamentals of Focus (Rapid Tools for Estimating H₂ Containing fuel Combustion Characteristics)

Deep Learning tools to help combustor design and troubleshoot

- Knowledge of <u>all fundamental characteristics</u> of a fuel blend is vital to accurately design or troubleshoot a combustor
- Unfortunately, it takes a huge time to estimate all the characteristics
- We train DL tools so that they can provide the necessary information to the user quickly
- We will obtain all the necessary training data from various high-fidelity 0-D, 1-D, CFD, and experimental models
- Special partnership with Microsoft

A Summary of the Project

Summary of effort

This project aims to fill the existing knowledge gaps and investigate the fundamental aspects of H_2 containing-fuel combustion to enable improved computational modeling for current and future gas turbine combustors developed and targeted by the leading original equipment manufacturers (OEMs).

Questions? Thank you

