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Background and Motivation

* AOI 1: Hydrogen combustion fundamentals for gas
turbines.

 Qverarching goal: improve understanding of fundamental
phenomena of hydrogen containing fuels.

* “A hydrogen economy is gal gaining global attention for
reducing carbon emissions.’

* Again?
* Tons of ignition delays and flame speeds data, am | going to
measure them again?
* How to define hydrogen containing fuels?

* What is the knowledge gap?



(High) Hydrogen Containing Fuels

* Pure hydrogen (H,), carbon free hydrogen carrying fuels (such as
ammonia, NH,), mixtures of them and with natural gas

* Hydrogen fraction must be high enough (e.g., >50%) to achieve
significant carbon reduction

J. Goldmeer, “POWER TO GAS : HYDROGEN FOR POWER GENERATION Fuel Flexible Gas Turbines as Enablers for a Low or Reduced
Carbon Energy Ecosystem,” 2019



Knowledge Gaps
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Different conditions in realistic turbines and fundamental
bench top studies
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Martynenko, V. V., et al. "High-temperature ignition of hydrogen and air at high pressures downstream of the reflected shock wave." Journal of Engineering Physics and Thermophysics 77.4 (2004): 785-793.



Objectives

* Objective 1: Development of comprehensive database on autoignition
delays

 Objective 2: Measurement of turbulent flame speeds and emissions
* Objective 3: Measurement of laminar flame speeds

 Objective 4: Validation and optimization of existing kinetic models



Task 1: Project Management and Planning

* We will manage and direct the project in accordance with a Project
Management Plan to meet all technical, schedule and budget
objectives and requirements.

» We will coordinate activities in order to effectively accomplish the
work.

« We will update the Project Management Plan 30 days after award and
as necessary throughout the project to accurately reflect the current
status of the project.

* We will submit quarterly report, attend program review meetings, and
arrange regular meetings with program manager.



Task 2: Investigation of autoignition of high hydrogen fuels
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» Autoignition delay times (tl DTs) will be gl
measured at practical gas turbine conditions at a
broad range of conditions to create a

comprehensive database.
* Fuels: H,/natural gas mixture and NH,/H,

mixture

103/Ts (1/K)

* Temperature range: 600 K to 1400 K =
» Equivalence ratio: 0.6 to 1.6 i
* Pressure: ~20 atm

* Facility: high pressure shock tube
e Q1to Q8

* M. Karimi, B. Ochs, W. Sun, and D. Ranjan, “High pressure ignition delay times of H2/CO mixture in carbon dioxide and argon diluent,” Proc. Combust. Inst., 2020 1000/T (K™
« S. Barak, E. Ninnemann, F. Barnes, J. Kapat, and S. Vasu, “High-Pressure Oxy-Syngas Ignition Delay Times With CO2 Dilution : Shock Tube Measurements and
Comparison of the Performance of Kinetic Mechanisms,” J. Eng. Gas Turbines Power, vol. 141, p. 021011, 2019
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Task 2: Investigation of autoignition of high hydrogen fuels

* Fuel testing Matrix for IDTs

Donohoe etal.

H,/NG (volume

G (volu 5096/50% 709%/30% 90%%/10% 100%/0
ratio) in air
H,/NG/NO . . .
wolime ratioy in | 50%/50%/(10 70%/30%/(10 90%/10%/(10 | 10001010 o)
i ppm) ppm) ppm)
NH/H, (volume 3006/70% 5096/50% 8096/20% 100%/0
ratio) in air
NH,/H,/NO o . .
wolurse ratioy in | S0%/70%/(10 50%/50%/(10 BO%I20%/(10 | g0 10 o)
i ppm) ppm) ppm)

N. Donohoe et al., “Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures,” Combust. Flame, vol.
161, no. 6, pp. 1432-1443, 2014.



Task 2: Investigation of autoignition of high hydrogen fuels

* GT high pressure shock tube (funded by NETL UTSR Program)
Key features:

« Large internal bore (6 inch or 15.24 cm) / A
* 69 ft long (~50 ms test time) i £ 200
* Certified at 376 atm . o £ 15
0.2 um surface finish (electropolishing) / £100

» Optical access

4 6
Time (ms)




ask 3: Investigation of turbulent flame speeds of high hydrogen
fuels at high turbulence levels

« Unknown effect from pressure, preheat conditions and fuel sensitivity

« Study to be performed at high preheat temperatures (~800K) and
pressures (~20 bar)

* Proposed study:

1. Constant laminar flame speeds measurements of turbulent flame speed
2. Constant Reynolds number studies for turbulent flame speed
3. Constant equivalence ratio measurements of turbulent flame speed



Task 4: Measurement of emissions from turbulent flames of high

hydrogen fuels

* H, Increase emissions

* NO, emission from ammonia Is
huge

* For emissions:

* From premixed H,/NG turbulent
flames

* From premixed H,/NH, turbulent
flames

* From non premixed H,/NH,
turbulent flames
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Fuel composition matrix for turbulent flame speeds and emissions
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Task 5: Investigation of laminar flame speeds at high
preheating conditions

« Laminar flame speeds with high preheating temperatures (600 K to 800 K)
« Shock tube naturally is a high pressure vessel

» Replace endwall to a large optical window

* in house code (ASURF) modeling spherical flame
* Q910 Q12
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A. M. Ferris, A. J. Susa, D. F. Davidson, and R. K. Hanson, “High-temperature laminar flame speed measurements in a shock tube,” Combust. Flame, vol. 205, pp. 241-252, 2019



ask 6: Development of reduced and optimized chemical
Kinetic models for hydrogen containing fuel

* A comprehensive kinetic model is
needed including H,, CH,, C,-C;,
NH;, and NO, modules.

« We will develop a kinetic model
based on existing Kinetic models;
evaluate its performance, optimize

detailed model
e optimized model
©  non-optimized model

- 13 species

Autoignition delay (sec)

and reduce the model. 107 1
» Global Pathway Selection (GPS) ol L Ly
; 800 1000 1200 1400 1600 1800 2000
method for model reduction and Temperature (K)
optimization CH,/0,/C0O,=0.031/0.062/0.907 =1

S. Coogan, X. Gao, W. Sun, Evaluation of Kinetic Mechanisms for Direct Fired Supercritical Oxy-Combustion of Natural Gas, Turbo Expo 2016



Thank you & Questions?



Task 2: Investigation of autoignition of high hydrogen fuels

* (Potential) challenges on IDTs measurements at proposed conditions

* Thick boundary layer induced by air
* Sensitivity to impurity (H,) and wall passivation (NH,)

« Solution: experimental protocol established in previous UTSR project
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O. Mathieu and E. L. Petersen, “Experimental and modeling study on the high-temperature oxidation of ammonia and related NOx chemistry,” Combust. Flame, vol. 162, no. 3, pp. 554-570, 2015



