

FEAA149: Next Generation Environmental Barrier Coatings

B. A. Pint and K. A. Kane

Corrosion Science & Technology Group Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN 37831

November 2021

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Acknowledgments

- Funding from U.S. DOE, Office of Fossil Energy, Turbine Program
 - Rich Dennis, Manager; Rin Burke, Project Monitor
- ORNL Team
 - M. J. Lance characterization (PSLS, GDOES, Raman)
 - E. Cakmak XRD
 - G. Garner, B. Johnston oxidation experiments
 - T. Lowe SEM
 - V. Cox, T. Geer metallography
 - E. Lara-Curzio, J. A. Haynes, R. Lowden, D. Mitchell input on CMCs
- Collaborations
 - Stony Brook Univ., Center for Thermal Spray Research
 - S. Sampath and E. Garcia-Granados
 - NASA Glenn Research Center
 - K. Lee and B. Harder
 - Praxair Surface Technologies
 - M. Gentlemen and M. Sweet

ORNL project exploring the next generation of EBCs to protect SiC/SiC CMCs for IGT duty cycle

Past, Present & Future: ORNL Contributions to CMCs

Maintained project structure since starting EBC work in 2018

- Parameters
 - Coat high-purity CVD SiC (CMCs hard to find)
 - Experiments in 90-100% H₂O at 1250°-1450°C
 - Coatings made at Stony Brook Univ. CTSR
 - With and without Si bond coating $(T_m = 1414^{\circ}C)$
- Objective
 - Develop a lifetime model for CMCs in land-based turbines
 - Failure criteria
 - -Cyclic testing in air+H₂O
 - Physical properties
 - -Thermal expansion
 - Thermal conductivity
 - -Mechanical properties
- Microstructure analysis
 CAK RIDGE National Laboratory

Current EBC limited by Si melting point ~1410°C;How does EBC perform without Si bond coating?YbDS:Yb2Si2O7Single layer YbDS
No Si bond coating

Current "commercial" EBC

Resin YbDS SiC R_a ~ 5μm SiC 100 μm

Next generation EBC (thinner YbDS: adhesion issue)

Year 2 milestones complete: built on Year 1 milestones

- Task 1. Define Reaction Kinetics and Failure Criteria
 - Milestone #1: measure oxidation kinetics at 3 temps. ±Si bond coating
 - Milestone #4: complete at least 1,500 cycles at 1350°C (complete)
 - Hoping to achieve failure \pm SI bond coating to develop EBC failure criteria
 - Is there a critical SiO₂ thickness at failure?
- Task 2. Measure thermal expansion coefficients
 - Milestone #2: measure CTE of 2+ EBC components
 - Milestone #5: measure CTE of 2+ EBC ceramic components (complete)
 - Task complete with full set of CTE data to ~1500°C for model (new ORNL dilatometer)
- Task 3. Advanced Characterization and Modeling
 - Milestone #3: initial estimate of critical temperature for 25,000 h lifetime
 - Milestone #6: refine lifetime predictions using Task 1 and Task 2 input
 - Idealized "best case" scenario in completed 2nd iteration

Task 2 milestone: 1500°C CTE measured for model

Made Yb₂Si₂O₇ and Yb₂SiO₅ samples in collaboration with UVa (Opila's group)

Task complete

Thermal (cooling) stress: $\sigma_{ox} = -E_{ox} \cdot \Delta T \cdot (\alpha_{alloy} - \alpha_{oxide})/(1 - \upsilon)$ **Strain Energy**: $W = f(\delta_{oxide})$: $\delta_{spall} = f(\Delta T \cdot \Delta \alpha)^{-2}$ (critical scale thickness for spallation)

Year 3 (FY21-22) milestones to continue this progression

- Improving on current EBC performance at ≥1350°C
 - Milestone #7: Compare the cyclic oxidation performance in air-90%H₂O of two EBC-coated SiC substrate roughnesses at two temperatures including the effect on the scale growth rate
 - ORNL filed provisional patent on surface roughening strategy in 2020

Need to be industry relevant

- Milestone #8: Compare the silica growth rate and cyclic oxidation durability of Yb disilicate and mixed Y-Yb disilicate EBC coatings on SiC substrates with and without a Si bond coating
 - Y-Yb is less expensive industry standard EBC

Advanced characterization is key to progress

 Milestone #9: Submit a journal publication on the use of Raman spectroscopy to study the evolution of the phase composition of the EBC and the thermally grown silica scale at multiple temperatures

Exposures to H₂O in several rigs at 1300°-1425°C

1-h cycles: automated cyclic rigs Air + 90% H_2O , 10 min cool in lab. air

Current:

New rig: >1400°C

Task 3: Advanced characterization Yb mono- and di-silicates have unique Raman spectra

Year 3 Milestone #9: Educating community about new Raman technique that can detect silicate and SiO₂ phases

- New ORNL capability
 - Maps not point analysis
- <u>Potential</u> to detect amorphous/crystalline in thermally grown SiO₂ scale

Air Plasma Sprayed Yb₂Si₂O₇ top coating

Air Plasma Sprayed Si bond coating

CAK RIDGE

CVD SiC substrate

- As-annealed coating
- No SiO₂ observed
- Black: amorphous YbSiO

- 500 1-h cycles 1250°C
- No amorphous phase

Red = Yb_2SiO_5 Green = $Yb_2Si_2O_7$ Yellow = Cristobalite Blue = Silicon

Raman shows cristobalite forms in all cases at 1350°C

• Tridymite formation (not observed) suggests contamination in system

Task 3: Methodology+software developed to measure kinetics

EBC: median better, distribution not normal

Task 1 Key accomplishments: established oxidation baseline

- Utilized SiC reaction tube to mitigate specimen volatilization
- Bare coupon steam rate
 = Max. possible oxidation rate
- Bare coupon air rate
 Min. possible oxidation rate
- Baseline kinetics allow qualitative evaluation of EBC effectiveness in reducing H₂O ingress

Methodology for assessing EBC performance

- All based on measured SiO₂ growth rate
- Based on Harder (NASA)
- Si and SiC in steam
 - No EBC protection
- EBC behavior
- Si and SiC in air
 - No H₂O acceleration

Enhancing SiC roughness improves coating adhesion without Si bond coating

- YbDS thickness kept consistent with grit blasted specimens
- Nominal ~60 µm YbDS thickness
- 2020: submitted provisional patent

FCT lifetime increased at 1350°C

>500 1-h cycles at 1350°C: transition to faster growth

- Visibility of convex regions heavily dep. on polishing angle
- Measuring "SiC recession" at flat regions more objective
- Scales fully cristobalite
 - β- to a-phase at ~270°C with 5vol% reduction ~10¹-10² GPa
- At 1500 1-h cycles, incomplete resin infiltration, TGO grain fall out during polishing; can still measure SiC recession

Similar acceleration with a Si bond coating: edge failure?

Year 3 Milestone #7: compare 2 roughness levels Initial result at 1350°C: 2nd ER iteration not as promising

Year 3 Milestone #8: compare YbDS to commercial mixed (Yb/Y)₂Si₂O₇ EBCs

Is mixed REDS EBC phase stable through thermal cycling?

Does increased CTE of mixed REDS lead to premature spallation compared to YbDS?

Does EBC composition or thickness influence TGO kinetics?

https://en.institut-seltene-erden.de/aktuelle-preise-von-seltenen-erden/

1350°C air: EBC thickness did not impact scale growth rate

1350°C 90%H₂O: silica growth slower on (Y/Yb)DS

CAK RIDGE

Task 3 model: 1st iteration suggested 25 kh life is challenging

- Based on measured reaction kinetics
 - With and without Si bond coating
- Assume a critical SiO₂ thickness
 - Thermally grown oxide under silicate layer
 - Effective EBC will reduce kinetics (inhibit H_2O)

2nd model iteration: "best case" scenario EBC stops all H₂O effects (using rates from test in dry air)

Unlike TBC, H₂O effect accelerating SiO₂ growth has a major effect on predicted life

2nd model iteration: rates recalculated for 10 atm combustion gas

Still assuming EBC prevents H₂O effect for entire lifetime

CAK RIDGE

Major accomplishments and more great things to come

- Accomplishments
 - Measured CTE values to 1500°C for model
 - Established framework for assessing EBC performance
 - Established procedure for measuring EBC reaction kinetics
 - New image analysis tool developed to measure TGO
 - 2nd iteration of EBC lifetime model complete (w/o Si bond coating)
- Year 3 milestones will continue progress on next generation EBCs for >1400°C operation
- Developing partnerships
 - NASA Glenn
 - Modifications to reduce scale growth, joint fabrication of specimens/testing
 - Industry
 - Commercial sprayed Yb/Y silicate EBCs for testing at ORNL

Thank you for your attention! EBC publications:

- K. A. Kane, E. Garcia-Granados, R. Uwanyuze, M. J. Lance, K. A. Unocic, S. Sampath, B. A. Pint, "Steam oxidation of atmospheric plasma sprayed ytterbium disilicate environmental barrier coatings with and without a silicon bond coat," Journal of the American Ceramic Society 104 (2021) 2285-2300.
- B. A. Pint, P. Stack and K. A. Kane, "Predicting EBC Temperature Limits for Industrial Gas Turbines" ASME Paper #GT2021-59408, for Turbo Expo 2021 Virtual Conference and Exhibition, June 11-15, 2021.
- K. A. Kane, E. Garcia, P. Stack, M. Lance, C. Parker, S. Sampath, B. A. Pint, "Evaluating steam oxidation kinetics of environmental barrier coatings," Journal of the American Ceramic Society, in press. https://doi.org/10.1111/jace.18093
- K. A. Kane, E. Garcia, M. Lance, C. Parker, S. Sampath, B. A. Pint, "Accelerated oxidation during long-term cycling of ytterbium silicate environmental barrier coatings at 1350°C," Journal of the American Ceramic Society, in press. (accepted 10/29/2021)