Development and Application of Multipoint Array Injection Concepts for Operation of Gas Turbines on Hydrogen Containing Fuels

Virtual 2021 UTSR Workshop

Vincent McDonell 8 November 2021 mcdonell@UCICL.uci.edu

Outline

- Background
- Project objective(s)
- Technical approach
 - **Team**
 - Tasks
 - \circ Schedule
- Next Steps

Background

- UCI Combustion Laboratory
 - Founded in 1970
 - ✓ Reconcile conflict between Energy and the Environment
 - Initial focus on Aeroengines
 - Stationary Power/Alternative fuels
- High Hydrogen Content Fuels
- Extensive Experimental Research Facilities

- Air compressors
- Fuel mixing station
- Test cells
- —DG test area
- Fuel compressors
- Liquid fuel storage/pumps
 - DG test area

Perspective—High Hydrogen

Time	Project/Research Study Title	Scope
1997	Stand Alone Power Plant Running on Biomass Gas (EPRI)	Ignition delay times for lean H2/CO/Air mixtures
2001- 2005	Fuel Flexible Combustor for MTG (CEC)	Retrofit Capstone gas turbine engine for operation on 100% H2
2003- 2005	Correlation of Ignition Delay with IGCC ype Fuels (DOE UTSR)	Develop and Apply Flow Reactor to quantify ignition delay times at gas turbine premixer conditions
2005- 2007	Micro-mixing lean premixed system for unra-log NOx Hydrogen Combustion (Parker Hannifin/DOE)	Single/ multi injector lab tests for LBO, flashback, and emissions
2008- 2010	Numerical and Experimental study of mixing processe associated with hydrogen fuels	Detailed premixer mixing performance and companion detailed CFD analyses swirling and non-swirling flows to determine preferred turbulence and mixing models
2009- 2013	Gas fuel interchangeability criteria development (CEC)	Develop and evaluate methods for predicting how fuel type impacts LBO, flast mack, and emissions
2010- 2012	Fuel Flexible Turbine System/Integrated Gasifier (Captone/DOE)	mulation and injector/combustor/engine testing for robustness to flashback
2010	Evaluation of low-swirl burner under high pressure conditions with varying hydrogen content fuels (LBNL/DOE)	High pressure terting and laser diagnostics of flow field for flame speed, flashback, LBO, emission
2011- 2014	Development of flameholding criteria for high hydrogen content fuels (DOE UTSR)	Developed test rig, data race and correlation for flameholding tendencies at high P, T
2013- 2016	Development of flashback criteria for high hydrogen content fuels (DOE/UTSR)	Developed test rig, data base, and correlation for flashback tendencies at high P,T
2014- 2016	Application of chemical reactor networks to predict fuel composition impacts on burner stability and emissions (CEC)	Obtain data for industrial burners and apply simulation methodology to predict stability and emissions for high hydrogen content fuels
2017- 2020	Impact of renewable fuels on appliance performance (CEC)	Obtain data for <u>appliances</u> and apply simulation methodology to predict stability and emissions for high hydrogen content fuels
2020- 2023	Extending hydrogen tolerance while reducing emissions of appliances (Industry, SCG, ATCO)	Evolve burner systems to reduce emissions and extend operability of appliances
2021- 2024	Development of 100% hydrogen fueled gas turbine systems (DOE, Industry)	Evolve fuel injection schemes to reduce emissions and extend operability of gas turbine systems

© UCI Combustion Laboratory 2021

4/38

Gas Turbine Emphasis

[©] UCI Combustion Laboratory 2021

U

100

1000

AFT

120

Phase I Goal

1500

-

Leonard &

Steamaier

2000

2500

5/38

Perspective on Hydrogen or Hydrogen Addition to NG for GTEs

- Interchangeability?
- What about combustion related considerations?
 - Operability
 - ✓ Wide flammability limits → improved static stability limits
 - ✓ Autoignition?
 - ✓ Flashback?
 - Emissions
 - ✓ NOx Emissions (CO and CO2 inherently eliminated)

6/38

Technical Questions

- Interchangeability
 - Context of SCG Rule 30

Hydrogen is relatively interchangeable with existing pipeline gas on energy throughput basis, yet 3x volume flow

7/38

Technical Questions

- Interchangeability?
- What about combustion related considerations?
 - Operability
 - ✓ Wide flammability limits → improved static stability limits?
 - ✓ Autoignition?
 - ✓ Flashback/Flameholding?

• Emissions

✓ NOx Emissions (CO and CO2 inherently reduced as H2 displaces fossil Carbon)

8/38

Static Stability Limits

- Benefit of wider flammability limits of hydrogen
 - Improved turndown

Ignition Delay

• Engine Implications

		Estimat	ed Ignition De	lay Time, mse	ec "Lean Premixed"
			H2/CO	H2/CO	
Engine	Pressure	Air Temp	Based on	CHEMKIN	
	(atm)	(K)	Experiments	(Mueller)	2800F AX3 OF SYMMETRY
GE 9H *	23	705	85	11800	20001
Solar Taurus 65	15	670	153	-	
Solar Taurus 60	12.3	644	221	-	
Solar Mercury 50**	9.9	880	59	4941	7x minimum safety factor
GE LM6000 *	35	798	35	34850	7X minimum survey factor
Siemens V-94.3A *	17.7	665	141	-	
Siemens V-94.2 *	12	600	336	-	
Capstone C60**	4.2	833	140	1869	

* Inlet temp estimated from ideal gas, isentropic compression

** Recuperated Engine

- represents no ignition within 1 min.

Autoignition *not an issue* with well designed premixer: all OEMs have shown or are in process of showing this

10/38

DILUTION JET AIR (40%)

Flashback

[©] UCI Combustion Laboratory 2021

Natural Gas Combustor NOx Emissions

Natural Gas Combustor NOx Emissions w/Hydrogen

Natural Gas Combustor NOx Emissions w/Hydrogen

Current Strategies

- Micromix strategies adopted by GE, MHI (and others) provide low emissions performance with ever increasing hydrogen content
- Ansaldo GT-26, 36 two stage combustion allows dilution to temper NOx formation
 MHPS
 Combustor
 Multi-nozzle combust
 - H₂ burning in air plus
 CO₂ and water
 - Lowers flame temp

under development

Kawasaki, 2020

MHPS (2019). H₂ Power Generation Handbook

• MT Mixer: P=17 atm MT Mixer: P=10 atm 15% O2 (ppmVd) Entitlement: P=17 atm GE: <9ppm York, et al. (2013). Ω 1400 1500 1600 1700 1800 1900 2000 Flame Temperature (K) Fig. 2 Model cross section and photograph of small multitube mixer for high-hydrogen fuel

• Aeroengine Context*

* McDonell, V.G. (2021). Emissions Reduction Technologies for Large Engine—UCICL Gas Turbine Combustion Short Course

16/38

• Aeroengine Context

Figure 12 CFD assessment strategy. From ref. [2]

At high power, adjacent nozzles become dominant. Combustor runs lean. Core effects are diminished

* C.M. Lee, C. Chang, S. Kramer, and J. Herbon (2013). NASA project develops next generation low-emissions combustor technologies, Paper AIAA-2013-0540

17/38

Woodward

9-pt module

1st to Blow off

• Aeroengine Context: NOx "Entitlement"

Tacina, R. (1990). Low NOx Potential of Gas Turbine Engines, Paper AIAA-90-0550, 28th Aerospace Sciences Meeting, Reno NV.

18/38

• Adaptation for hydrogen fuels

© UCI Combustion Laboratory 2021

NOx Emissions - 50% H2-50% NG, No Dilution

Hollon, B., Steinthorsson, E., Mansour, A., McDonell, V., and Lee, H. (2011). Ultra-Low Emission Hydrogen/Syngas Combustion With a 1.3MW Injector Using a Micro-Mixing Lean-Premix System, Paper GT2011-45929, ASME TurboExpo 2011, Vancouver 19/38

• Prior work has established potential for micromix concepts but questions remain and an option between conventional scale and micro scale may be beneficial to consider

20/38

Outline

- Background
- Project objective(s)
- Technical approach
 - **Team**
 - Tasks
 - \circ Schedule
- Next Steps

 $\ensuremath{\mathbb S}$ UCI Combustion Laboratory 2021

Objectives

- The proposed work will
 - 1) <u>adapt</u> advanced liquid fuel injectors designed by Collins Aerospace for aero engines to accommodate injection of hydrogen/hydrogen natural gas blends and <u>screen</u>
 - 2) <u>demonstrate</u> their operation using experiments from laboratory scale model combustor configurations at elevated pressures and temperatures UC Irvine, and
 - 3) develop a <u>design</u> for test hardware that can be demonstrated at engine conditions in a test rig demonstration at Solar Turbines.

Outline

- Background
- Project objective(s)
- Technical approach
 - **Team**
 - Tasks
 - \circ Schedule
- Next Steps

 $\ensuremath{\mathbb S}$ UCI Combustion Laboratory 2021

- General Approach
 - Solar provide guidance on engine targets
 - **o** CA migrate designs for liquid LDI concepts to accommodate hydrogen
 - ✓ Computational Fluid Dynamics to guide
 - ✓ Facilitate parametric study
 - \checkmark Facilitate documentation of boundary and inlet conditions
 - ✓ Statistically designed experiments approach
 - **o** UCI experimentally screen individual injector concepts at atmospheric conditions w/preheat
 - ✓ Lean Blow off
 - ✓ Ignition
 - ✓ Flashback
 - ✓ Flame Structure
 - ✓ Emissions
 - CA Develop arrays from promising concepts
 - UCI Evaluate at up to 10 atm
 - Design for test rig at Solar Turbines

25/38

Schedule and Budget

						Project Tir	neline									
Task	9/1	0/21	12/10/21	3/10/22	6/10/22	9/10/22	12/10/2	22	3/10/23		6/10/23	9/10/23	12/10/23	3/10/24	6//10/24	DOE: \$80
1Project																
Management																Cost Share: \$20
2—Test Plan		_						_			1					
Development (All)																
3—Hardware		-	_								1			Design		
Development (CA)														only		-
								_		4						-
4Simulation		L 🕨														
Support (CA/UCI)												A				-
5 IICI 1 sture The star					•					+						4
5-UCI I atm Tests			կ		· ·											
										+						-
6_UCI 10 atm																-
Tests (UCI)						4			▼ _		▶ ▶	• 🔹				
										Т						-
7—UCI Array Test										+						-
										+						-
8-Design for Solar																
Test Rig (CA/Solar)																
]
9-Reporting		*	*	*	*	*		*	*	•	*	*	*			1
(UCI/All)																

Milestones

--Test Plan Report

--UCI Test Report—1 atm

--UCI Test Report-10 atm

--Solar Design Report-Included in Final Report

--Quarterly Reports

--Final Report

 $\ensuremath{\mathbb S}$ UCI Combustion Laboratory 2021

0,000 200,00

26/38

Project Management Plan

• Organization

© UCI Combustion Laboratory 2021

27/38

- Task 2—Test Plan Development
 - Informed by target Solar engine platform
 - \checkmark Sets conditions of interest and basic injector building block scale
 - **o** Parameter space of interest

	Minimum	Maximum	Comment
Parameter			
1S1/S2 flow split	40/60	60/40	Hardware configuration
2Swirl Angle, deg	30	60	Hardware configuration
3Contraction, r/R	r/R = 0.8	r/R = 0.6	Hardware configuration
4Temperature, K	500	800	Flow condition
5Pressure Drop, %	2	4	Flow condition
6%H2 in NG	0	100	Flow condition to establish operation range
Fuel to Air Ratio	LBO	Near stoichiometric	Flow condition to establish operation range
Inlet Pressure	1 atm	10 atm	Task 5—1 atm, Task 6—up to 10 atm

- ✓ 3 geometric parameters
 - Three level full factorial design: 27 configurations
 - Fractional factorial design can reduce number of configs built
- ✓ 3 flow parameters

54 or 56 test points (Box-Behnken or I-Optimal Design)

28/38

- Task 2—Test Plan Development
 - Diagnostics
 - ✓ F/A Mixing

- Stability/LBO

д

29/38

30/38

- Task 3—Hardware Development (Collins Aerospace)
 - **o 3.1** Fabricate single injector configurations based on Test Plan
 - ✓ AM concepts
 - **o 3.2** Fabricate 2-3 arrays based on results from single injector tests

• Task 4—Simulation Support (Collins/UCI)

	tempe	erutore	
1200	1600	2000	2400
960			2650

	Ve	locity-m	agnitud	0
	25	50	75	100
0				120

32/38

 $\ensuremath{\mathbb S}$ UCI Combustion Laboratory 2021

Task 6—High Pressure Tests (UCI): ~up to 10 atm, 800 K
 Single Module

34/38

- Task 7—Array Tests (UCI)
 - Collins: CFD design
 - Check injector to injector spacing

• Task 8—Design for Solar Test Rig (Collins/Solar)

© UCI Combustion Laboratory 2021

36/38

Outline

- Background
- Project objective(s)
- Technical approach
 - o **Team**
 - o Tasks
 - Schedule
- Next Steps

37/38

 $\ensuremath{\mathbb S}$ UCI Combustion Laboratory 2021

Next Steps

- Finalize Test Plan
- Finalize initial hardware configurations
- Prepare 1 atm stand
- Prepare diagnostics

38/38

