University Turbine Systems Research Program Annual Meeting 10 November 2021 Improving NOx Entitlement with Axial Staging DE-FE0031227

Dr. Scott Martin Embry-Riddle Aeronautical University Daytona Beach, FL

Tommy Genova, Michelle Otero, Bernie Stiehl, Jonathan Reyes, Tyler Worbington, Dr. Kareem Ahmed and Dr. Subith Vasu Mechanical & Aerospace Engineering University of Central Florida Orlando, FL

DOE University Turbine Systems Research Program PM: Dr. Seth Lawson Industry Advisor: Dr. Changjin Yoon GE Research Center

Why Axial Staging

EMBRY-RIDDLE Aeronautical University.

Background, Why Axial Staging

- Firing temperature is main parameter to increase efficiency of ground-based gas turbine powerplants.
- NO_x is an exponential function of firing temperature.
- Need to minimize time at peak firing temperature.

R

Axial staging increases the peak firing temperature with a short residence time

2

Obtain axial stage data at industry relevant conditions.
Develop reacting jet in crossflow correlation and validate CFD for axial stage modeling.

Tasks

EMBRY-RIDDLE Aeronautical University...

- Task 2: Develop moderate pressure axial stage test rig
 - Tune headend to provide similar NO_x curve as current engines
- Task 3: CH4-air axial stage conditions
 - Pressure effects
 - Level of axial premixing and preheating
 - Reacting and non-reacting jets
 - PIV, Chemiluminescence, exit emissions
 - Rig heat loss and test section inlet conditions
 - Axial jet mixture fraction profile
- Task 4: CH4-air/diluent axial stage conditions
 - Reacting and non-reacting jets
 - PIV, Chemiluminescence, exit emissions
- Task 5: Axial stage modeling
 - Develop reacting jet in crossflow correlation
 - Validate CFD

Experimental Facility and Diagnostics

Experimental Facility

- ➢ 5.4 atm combustion facility
- Concentric dump style headend combustor run at lean conditions
- > Jet injector diameter = 12.7 mm and 4 mm
- > Optically accessible test section for optical diagnostics with variable air heaters
- Contoured nozzle exit that is adjustable in length
- Perforated screen and 6-inch section to improve axial stage boundary conditions
- Increased exit length to improve CO burnout before emissions sampling

Test section 3.5" tall 3.0" wide 4.0" window length 0.5" axial jet diameter Jet starts 0.5" from window

Instrumentation and Diagnostics

EMBRY-RIDDLE Aeronautical University...

- Particle Image Velocimetry (PIV)
 - Double pulse Nd:YAG Evergreen 200, 15 Hz repetition rate
 - Andor Zyla 5.5 sCMOS Camer
 - 530 ± 10 nm filter
 - $3 \mu m Al_2O_3$ particles used for seeding both jet and crossflow
 - Vector resolution: 600 μ m/vector, $l_f = 1500$ micron (3-4 vectors across flame
- High Speed CH* Chemiluminescence
 - Photron fastcam SA1.1
 - 430 nm filter
 - 20,000 fps
 - Spatial resolution: 270 μm/pix
- Temperature Measurements
 - Exposed bead B-type thermocouple
 - High temperature c-type thermocouple
- Emissions
 - E-Instruments BTU 4500 Combustion Analyzer

Headend Calibration

EMBRY-RIDDLE Aeronautical University...

- Headend conditions to match real-world gas turbines:
 - Headend Φ: 0.58-0.72
 - Temperature : 1350-1650°C
 - Velocity: 50 to 80 m/s
 - Pressures: 1 to 5.4 atm
 - NO levels: 5-25 ppmVol
 - Relatively uniform velocity profile prior to axial stage
 - Velocity and turbulence intensity profiles follow a 4th order fit function
 - Temperature profile follows an approximate 2nd order function
- Velocity and turbulence intensity were measured at 5.4 atm.
- > Temperature was measured at 1 atm.

CH4-air axial stage conditions

Pressure Effects

Premixing Effects Preheating Effects Non-Reacting Jets Rig Heat Transfer

- Stiehl, B., Otero, M., Genova, T., Martin, S., Ahmed, K., "The Effect of Pressure on NO_x Entitlement and Reaction Timescales in a Premixed Axial Jet-in-Crossflow", Journal of Energy Resources Technology, 2021.
- Otero, M., Genova, T., Stiehl, B., Martin, S., Ahmed, K., "The Influence of Pressure on Flame-Flow Characteristics of a Reacting Jet in Crossflow". Journal of Energy Resources Technology, 2022.

Pressure Effects

EMBRY-RIDDLE Aeronautical University...

- Test Conditions
 - Pressure Range: 1- 5.4 atm
 - Headend Φ: 0.58
 - Axial Jet Φ: 0.75
 - Total Φ: 0.60
 - Momentum Flux Ratio: 15
 - Firing Temperature: 1730K
 - Axial Jet Diameter: 12.7mm
 - Fuel: Premixed methane/air for crossflow and axial jet
- Uniform normalized incoming velocity profiles with pressure
- Decrease in turbulence intensity at elevated pressure
- \blacktriangleright CFD profile extrapolation to 2nd dimension based on PIV data

PIV Velocity Profile Extrapolation for CFD

Pressure Effects

EMBRY-RIDDLE Aeronautical Univ<u>ersity</u>...

- Decrease in flame lift off height with pressure
- Increase ignition delay time (shorter chemical timescales)
- Increased jet penetration with elevated pressure due to increase in heat release resulting in lower entrainment
- Trajectories underpredicted with literature correlations

Noticeable difference between 5 and 1-4 atm.

EMBRY-RIDDLE Aeronautical University...

Emissions

- \succ NO_x levels increase with pressure in a single stage combustor
- ➢ Single stage combustor has longer length leading to increased thermal NO
- Benefits of axial staging are greater at higher pressures
- Shear burning flame (low pressure) seen to contribute to NO_x production greater than core burning flame (high pressure) attributed to lower hot zones at higher pressures

CH4-air axial stage conditions

Pressure Effects Premixing Effects Preheating Effects Non-Reacting Jets Rig Heat Transfer

- Genova, T., Otero, M., Reyes, J., Ahmed, K.A., Martin, S., "Partial Premixing Effects on the Reacting Jet of a High Pressure Axially Staged Combustor", Journal of Engineering for Gas Turbines and Power, 2020.
- Stiehl, B., Otero, M., Genova, T., Reyes, J., Ahmed, K., Martin, S., Velez, C., "Simulation of Premixed and Partially Premixed Jet-in-Crossflow Flames at High-Pressure", Journal of Engineering for Gas Turbines and Power, 2020.
- Genova, T., Otero, M., Stiehl, B., Morales, A., Martin, S., Ahmed, K.A., "Preheating and Premixing Effects on NO_x Emissions in a High-Pressure Axially Staged Combustor", Combustion and Flame, 2021.

EMBRY-RIDDLE Aeronautical University...

Effect of Premixing at Two Fuel Splits

- > Fully and partially premixed flames look similar and ignite further upstream
- > 15% fuel split burns mainly in viewing window, richer jet continues burning out of viewing window
- > Non-premixed burns significantly further downstream for both fuel splits
- ➤ Total air/fuel fixed, phi=0.73, 1650 C overall temperature

EMBRY-RIDDLE Aeronautical University...

Effect of Premixing at Two Fuel Splits

EMBRY-RIDDLE Aeronautical University...

Jet Centerline Trajectories

- The Holdeman correlation predicts more penetration for both fully premixed cases
- The Holdeman correlation slightly overpredicts the non-premixed due to the strong windward entrainment
- Max CH* intensity plotted at each x/d_j to give an idea of flame strength at each location along the centerline

EMBRY-RIDDLE Aeronautical University...

Flame Liftoff and Emissions

- Non-premixed flame lifted significantly compared to fully premixed with HE temperature 1,580 C
- Non-premixed flames liftoff similar independent of jet equivalence ratio
- Liftoff increases for fully premixed flames as jet equivalence ratio increases
- Non-premixed cases need more time to mix the fuel and air plus mix with the hot cross stream
- Non-premixed flames have lower NOx emissions compared to fully premixed attributed to the enhanced pre-flame mixing with increased liftoff

CH4-air axial stage conditions

Pressure Effects Premixing Effects Preheating Effects Non-Reacting Jets Rig Heat Transfer

Genova, T., Otero, M., Stiehl, B., Morales, A., Martin, S., Ahmed, K.A., "Preheating and Premixing Effects on NO_x Emissions in a High-Pressure Axially Staged Combustor", Combustion and Flame, 2021.

Preheating Effects

EMBRY-RIDDLE Aeronautical University...

Liftoff Variance

- The 25 C case was noticeably less stable than the 150 C and 300 C cases with HE temperature 1,580 C
- Here the leeward flame ignites and propagates upstream, then back downstream for one of the 300 C and 25 C cases.
- > The 25 C case propagates further downstream and at a slower rate than the 300 C case
- This is seen across multiple cases: the 300 C cases dampen instabilities in the jet and are less suspectable to these large-scale fluctuations

Preheating Effects

- \succ τ_{ign} is used to quantify pre-flame mixing, where LO is liftoff height and v_{jet} is jet injection velocity
- Increasing jet preheat temperature hinders pre-flame mixing
- \succ This leads to increased NO_x compared to non-preheated jets

<u> ATTER</u>

Preheating Effects

Aeronautical University,

- The non-premixed and non-preheated jets increased ignition delay and \geq showed a NO_x benefit compared to the fully premixed, preheated jet with HE temperature 1,580 C, jet equivalence ratio 1.8 and J=3.5
- Three configurations were run at the same conditions and compared: \geq
 - > Fully premixed $T_{jet} = 300 \text{ C}$

 - Fully premixed $T_{jet} = 25 \text{ C}$ Non-premixed $T_{jet} = 25 \text{ C}$
- Although the non-premixed provided the greatest ignition delay, the non- \geq preheated provided the best NO_x reduction
- Attributed to the fully premixed jet mitigating hot regions compared to the \geq non-premixed jet

CH4-air axial stage conditions

Pressure Effects Premixing Effects Preheating Effects Non-Reacting Jets Rig Heat Transfer

Non-Reacting vs. Reacting

EMBRY-RIDDLE Aeronautical University.

Flow-field Comparisons

- > Non reacting vs reacting for J = 5.5 instantaneous u, v, and ω
- > J = 5.5, $\Phi_{jet} = 1.62$ (for reacting), $\Phi_{HE} = 0.75$, $v_{HE} = 74$ m/s, $v_{jet} = 72$ m/s
- Reacting case shows a more coherent windward shear region than the non-reacting case
- Vorticity magnitude stronger for the reacting case
- Same headend conditions

Centerline Jet Trajectories

- Non-reacting vs non-reacting for J = 5.5 and J = 7 time-averaged jet centerlines
- ► For J = 7, $\Phi_{jet} = 0.95$ (for reacting), $\Phi_{HE} = 0.66$, $v_{HE} = 69$ m/s, $v_{jet} = 77$ m/s
 - Max penetration: 3.5 D_j for reacting
 - Max Penetration: 2.7 D_i for non-reacting
- ► For J = 5.5, $\Phi_{jet} = 1.62$ (for reacting), $\Phi_{HE} = 0.75$, $v_{HE} = 74$ m/s, $v_{jet} = 72$ m/s
 - Max penetration: 3.1 D_i for reacting
 - Max Penetration: 2.8 D_i for non-reacting
- A larger difference in trajectories is seen for the $\Phi_{jet} = 0.95$ compared to $\Phi_{jet} = 1.62$ because the heat release for the leaner jet occurs earlier in the trajectory

EMBRY-RIDDLE Aeronautical University.

CH4-air axial stage conditions

Pressure Effects Premixing Effects Preheating Effects Non-Reacting Jets Rig Heat Transfer

Heat Transfer Measurements

EMBRY-RIDDLE Aeronautical University...

Experimental Setup

- Sampled with NI-9174 DAQ at 75 Hz to obtain transient period
- Inner wall flush thermocouple mounted at inlet of test section where jet would be injecting
- Simultaneously measure temperature on the inside and outside of the rig to backout heat flux

Surface mounted k-type thermocouple

Wall flush exposed bead k-type thermocouple

Heat Transfer Measurements **EMBRY-RIDDLE** Aeronautical University.

Heat Transfer Results

P (atm)	ϕ_{global}	$T_{global}(^{\circ}C)$	T _{inner} (°C)	T _{outer} (°C)	ΔT (°C)	q" (kW/m^2)
1	0.684	1564	44	226	182	91
5	0.517	1266	52	168	116	58
5	0.597	1400	55	212	158	78
5	0.649	1500	58	261	203	101
5	0.706	1600	62	286	224	111

- Temperature results for each case
 - Headend was varied between 1266-1600°C
- The outer wall temperature increased throughout the campaign, but did not vary much during each individual run

Outer Wall Temperature

- Recorded after 40 back-to-back runs
- Quasi steady-state
- Taken with infrared thermometer

CH4-air/diluent axial stage conditions

Diluents

EMBRY-RIDDLE Aeronautical University...

Testing Conditions

- ➤ Mass Flow Rate: 0.5kg/s
- Pressure: 5atm
- \blacktriangleright HE equivalence ratio : 0.70
- \succ Diluent gas: CO₂ and N₂
- Diluent %: 0 to 50 (replace air in axial stage)
- \blacktriangleright axial equivalence ratio: 1.75 to 3.5
- ➢ Fuel mass remain constant
- Momentum flux ratio: 5 and 8 without diluent
- Premixed Methane/Air Crossflow and Axial Jet

Diluent

EMBRY-RIDDLE Aeronautical University...

Diluents – Liftoff and Emissions

- Increased diluent leads to an increased axial jet equivalence ratio
- This in turn leads to increased liftoff
- Increased diluent leads to a decrease in overall NO_x of combustor
- CO₂ provided slightly better NO_x reduction compared to N₂

Reacting Jet-in-Crossflow Correlation

Jet Centerline Trajectories

EMBRY-RIDDLE Aeronautical University...

Jet Centerline and Max Trajectory Correlation

- MATLAB algorithm written to create correlation accurate within 1.8%
- Correlation holds for jets where there is sufficient heat release prior to deflection into crossflow (fully premixed vs. non-premixed)
- Three different equivalence ratios were run: 0.73, 1.07, and 1.78. Valid for P = 1-5.4 atm

Jet Centerline Trajectories

Jet Centerline and Max Trajectory Correlation

- Comparing to literature and industry-based correlations
- Holdeman and Lefebvre underpredict jet trajectory
- Recent Wagner investigation in a low Reynolds number reacting flow
- Non premixed case under-penetrates current correlation. CH* signal not seen until jet has already been swept into crossflow
- Level of premixing needs to be in the correlation

Jet Centerline Trajectories

EMBRY-RIDDLE Aeronautical University...

CFD-based, exp. validated

Traditional sqrt-trajectory description

$$\frac{y}{d} = a * J^b * \left(\frac{x}{d}\right)^c$$

sqrt-type	a	b	c	
Lefebvre [33]	0.82	0.5	0.33	
Holdeman [34]	0.89	0.47	0.36	
Demuren [32]	0.7-1.3	0.36-0.52	0.28-0.40	

Approximate 12.7mm jet data with quarter-Ellipse

$$\frac{y}{d} = \sqrt{\frac{2\alpha J * \left(\frac{x}{d}\right)^{\beta} - \left(\frac{x}{d}\right)^{2}}{\sqrt{J}^{\gamma}}}$$

Ellipse	α	β	γ	
(a)	1.0	0.88	1.0	
(b)	1.65	0.82	1.76	

CFD Validation

Operating Conditions

Headend condit	Axial jet conditions				
Main air flow	0.290	kg/s	Air flow	0.03618	kg/s
Main CH4 flow	0.010	kg/s	CH4 flow	0.002104	kg/s
By-pass air flow, total	0.071	kg/s	Inlet temperature	573	K
Hydrogen pilot flow, total	0.00048	kg/s	Inlet density	3.364	kg/m^3
Products velocity	49	m/s	CH4 mass fraction	0.05517	-
Products density	1.125	kg/m^3	O2 mass fraction	0.2202	-
Products temperature	1545	K	N2 mass fraction	0.72463	-
Pressure	5.4	atm.	Turbulence intensity	17	%
CO ₂ mass fraction, exit	0.0761	-	Turbulence length	0.0012	m
H ₂ 0 mass fraction, exit	0.07378	-	Axial jet diameter	12.7	mm
N ₂ mass fraction, exit	0.74468	-	J	10.0	
O ₂ mass fraction, exit	0.10544	-	T increase	100	K
Turbulence intensity	5	%			
Turbulence length scale	0.004	m			

EMBRY-RIDDLE Aeronautical University...

CFD Methodology

CONVERGE 3.0 URANS & LES Sage laminar combustion model with full GRI 3.0 kinetic mechanism Adiabatic wall BC's Modeled full width of rig from test section entrance to choke plate exit

URANS

RNG turbulence 4.5 M cell mesh 4 mm base mesh with embedding and AMR 0.025 s of statistics

LES

Dynamic Smagorinsky SGS turbulence 11.2 M cell mesh 2.5 mm base mesh with embedding, no AMR 0.03025 s of statistics 170 hrs on 360 cores

EMBRY-RIDDLE Aeronautical University...

Exit emissions data and CFD

Emissions	Data	LES probe	LES area average	
CO ₂	6.5	6.1	6.1	% Vol dry
CO	4.1	1.9	1.6	ppm dry 15% O ₂
NO _x	5.9	0.8	0.9	ppm dry 15% O_2

Note: CFD O₂ and H₂O from equilibrium calculation

EMBRY-RIDDLE Aeronautical University...

Averaged axial velocity and PIV centerline trajectory

40

EMBRY-RIDDLE Aeronautical University...

URANS Axial Stage Results

Simulation cases

		PIV EXP	1. Sim Inlet, Adiabatic	2. Sim Inlet, Adiabatic, Default turb	3. Sim Inlet, Heat Loss	4. Exp Inlet	5. DI Inlet	Adiabatic case a Peak T=2,405 K
								Average T=1,545 K
	Turbulence model	-	k-epsilon	RNG	k-epsilon	k-epsilon	k-epsilon	
	Inlet velocity	-	Case a	Case a	Case b	Experiment	Uniform	Non-adiabatic case b Peak T=2,280 K
	Inlet temperature	-	Case a	Case a	Case b	Case a	Uniform	Average T=1,430 K
	Inlet turbulence	-	Case a	Case a	Case b	Experiment	Uniform	
Em	nissions							
	NO _X (ppmvd) 15% O2	5.9	6.3	14.1	3.5	5.9	6.1	
	CO (ppmvd) 15% O2	4.1	1.1	1.5	1.3	1.2	1.3	
	CO ₂ (vol frac dry)	0.065	0.060	0.060	0.060	0.060	0.060	

Cases 1, 4 & 5 give best NO_x match

Headend CFD results

URANS Axial Stage Results

Lefebvre jet penetration correlation $(2, 3)^{0.33}$

$$\frac{y}{d_j} = 0.82J^{0.5} \left(\frac{x}{d_j}\right)^0$$

Momentum flux ratio

$$J = \frac{(\rho V^2)_{jet}}{(\rho V^2)_{crossflow}} = 10$$

Cases 1, 3 & 4 give best penetration match

CFD with Star CCM+

EMBRY-RIDDLE Aeronautical University...

- Substitute between 0 and 50% of axial jet air with either CO₂, or N₂ diluent
- \triangleright CO₂ dilution reacts slower than with N₂
- \blacktriangleright Higher Lift-off for CO₂ relative to N₂
- Chemiluminescence vs. CFD simulation
- Detailed chemistry with GRI 3.0 RANS CFD with half-width symmetric model 5M cells validated with experimental flame position (axial flame lift-off captured within 8% deviations)

CFD with Star CCM+

EMBRY-RIDDLE Aeronautical University...

Axial Profiles

- Axial Profiles along downstream coordinate show the decrease of reacting progress with increased diluent content
- \succ CO₂ reacts slower than N₂
- High Coupling between temperature and NO emission profiles
- Decrease in NO emission with more diluent (model validated experimental data within 3%)
- Increase in CO emission with more diluent (model validated experimental data within 9%)
- Same CFD conditions as previous slide

12d downstream

44

Outlet Levels

Genova, T., Otero, M., Reyes, J., Ahmed, K.A., Martin, S., "Partial Premixing Effects on the Reacting Jet of a High Pressure Axially Staged Combustor", Journal of Engineering for Gas Turbines and Power, 2020

Stiehl, B., Otero, M., Genova, T., Reyes, J., Ahmed, K., Martin, S., Velez, C., "Simulation of Premixed and Partially Premixed Jet-in-Crossflow Flames at High-Pressure", Journal of Engineering for Gas Turbines and Power, 2020

Stiehl, B., Genova, T., Otero, M., Reyes, J., Martin, S., Ahmed, K., "Fuel Stratification Influence on NO_x Emissions in a Premixed Axial Reacting Jet-in-Crossflow at High Pressure", Journal of Energy Resources Technology, 2021

Stiehl, B., Otero, M., Genova, T., Martin, S., Ahmed, K., "The Effect of Pressure on NO_x Entitlement and Reaction Timescales in a Premixed Axial Jet-in-Crossflow", Journal of Energy Resources Technology, 2021

Otero, M., Genova, T., Stiehl, B., Martin, S., Ahmed, K., "The Influence of Pressure on Flame-Flow Characteristics of a Reacting Jet in Crossflow". Journal of Energy Resources Technology, 2022

Genova, T., Otero, M., Stiehl, B., Morales, A., Martin, S., Ahmed, K.A., "Preheating and Premixing Effects on NO_x Emissions in a High-Pressure Axially Staged Combustor", Combustion and Flame, 2021

Stiehl, B., Genova, T., Otero, M., Martin, S., Ahmed, K., "Controlling Pollutant Emissions in a High-Pressure Combustor with Fuel-Diluent Blending", Fuel, 2022 (*in preparation*)

Thank you!

Questions?

