

HIGH-FREQUENCY TRANSVERSE COMBUSTION INSTABILITIES IN LOW-NOX GAS TURBINES (DE-FE0031285)

PI – TIMOTHY LIEUWEN

VISHAL ACHARYA BENJAMIN EMERSON DAVID WU

CREATING THE NEXT®

MOTIVATION FOR RESEARCH

- Combustion dynamics are a critical challenge in high efficiency gas turbines
 - Transverse, "screeching" instabilities are increasingly problematic
- Target architecture → Multi-nozzle can combustor configuration with interacting flames
 - Extensive research and literature to address longitudinal mode instabilities with acoustically compact flames
- Focus of the proposed project → High-frequency transverse combustion instabilities in multi-nozzle can combustor configurations.

Realistic multi-nozzle experiments and high frequency modeling capabilities needed

DISTINGUISHING FEATURES OF HIGH FREQUENCY, TRANSVERSE INSTABILITIES

- Acoustic wave motions perpendicular relative to main flow direction
 - intrinsic non-axisymmetric excitation
 - No direct net mass flow modulation of reactants (although indirect effect can be large, F_{TL} path on chart)
- Wave can be spinning or standing; nodal lines can move
- Acoustic wavelength of the order of heat release zone extent
 - Flame not compact; its spatial distribution matters
 - E.g., ideal heat release for 1-T mode has spatial integral of zero

EXPERIMENTS AND DATA ANALYSIS

TASK 2 ACCOMPLISHMENTS

CREATING THE NEXT®

RESEARCH TASK 2.1 - EXPERIMENT

- D=29 cm combustor

 → capture accurate high frequency acoustics
- Multiple nozzles

 → capture flame-flame
 interactions.
- Optical accessibility using quartz

 → spatio-temporal flow and
 flame characterization
- Ability to vary heat release distribution in radial and azimuthal direction
 → 3 fuel circuits (P, O1, O2)

RESEARCH TASK 2 TASK 2.2 – MODAL DYNAMICS

- Modal nature of transverse instabilities (e.g., m = 1 transverse mode)
 - Standing vs spinning: characterized by SR

RESEARCH TASK 2 TASK 2.2 – MODAL DYNAMICS

- Pressure signal is harmonically oscillating.
- Magnitude (envelope) of pressure signal is oscillating.
 → Quasi-periodicity
- Spin ratio and phase difference (anti-nodal line) are oscillating.

 \rightarrow The wave is predominantly a standing wave (SR = 0), but it periodically oscillates around it.

→ Anti-nodal line is oscillating around its averaged location (reason for pressure magnitude oscillation).

 \rightarrow Modal nature is periodically oscillating.

RESEARCH TASK 2 KEY TAKEAWAYS

- Developed multi-nozzle facility with radial/azimuthal fuel staging capabilities
- Identified range of conditions with 1-T mode, with various dominant standing and spinning wave dominant conditions
- ✓ Phase portraits show different types of dominant attractors, leading to substantively different pressure sensor measurements
- ✓ Magnitudes of pressure and heat release fluctuations are positively correlated, and their phase difference satisfies the Rayleigh criterion.
- Non-uniform azimuthal fuel staging reduces the overall instability amplitude
- Non-uniform azimuthal fuel staging provides a standing wave with antinode at a fixed location

MODELING THE DYNAMICS DURING HIGH-FREQUENCY INSTABILITIES

TASK 3 ACCOMPLISHMENTS

CREATING THE NEXT®

RESEARCH TASK 3.1 MODELING FRAMEWORK

High-frequency → Noncompact flames

- Cannot use global heat release dynamics
- Acoustic energy dynamics

$$\frac{\partial}{\partial t} \int_{V} e_{1} dV = \frac{\gamma - 1}{\gamma p_{0}} \int_{V} \left(p_{1} \dot{q}_{1} \right) dV - \int_{S} p_{1} \left(\vec{u}_{1} \cdot d\vec{S} \right)$$

A necessary condition for the Rayleigh Integral:

$$RI = \iint_{t \ V} p_1 \dot{q}_1 dV dt > 0$$

Explicit flame dynamics

$$\frac{\partial\xi}{\partial t} + u_r \frac{\partial\xi}{\partial r} + \frac{u_\theta}{r} \frac{\partial\xi}{\partial \theta} + s_L \left[\left(\frac{\partial\xi}{\partial r} \right)^2 + \frac{1}{r^2} \left(\frac{\partial\xi}{\partial \theta} \right)^2 + 1 \right]^{\frac{1}{2}} = u_z$$

Normalized Rayleigh Index

$$\Re = \frac{RI}{2E}$$

RESEARCH TASK 3.1 SUMMARY OF PRIOR RESULTS

- Stability for low-frequency compact flames: global flame transfer function
- Stability for high frequency non-compact flames: Rayleigh index
- Prior modeling studies on single flames
 - Axisymmetric mean flames centered in combustor
 - Axisymmetric mean flames offset from combustor
 axis
 - Non-axisymmetric mean flame effects
 - Comparison to induced axial excitation

RESEARCH TASK 3.1 PRIOR WORK → OPTIMIZATION STUDIES

• Prior work was for single flames only

- What about multiple flames/multi-nozzle systems?
- How to optimally position nozzles for stability?
- How to optimally operate given nozzles for stability?

RESEARCH TASK 3.1

()

S

 \mathbf{O}

NO

Georgia Tech

For a fixed set of nozzle locations, what is the optimal operating

RESEARCH TASK 3.1 NOZZLE PARAMFT -T MODF

RESEARCH TASK 3.1 OPTIMIZATION STUDY TAKEAWAYS

- Nozzle optimization study (fixed operating parameters, move nozzles around)
 - 1-R mode \rightarrow minimal RI at 0.6 R_c (pressure node) \rightarrow nozzles distributed symmetrically
 - 1-T mode \rightarrow non-axisymmetric \rightarrow radial offset depends on angular location in mode
 - Optimal distribution unlike conventional symmetric nozzle placements.
 - Indicates lowest possible *RI* requires drastically different nozzle placements.
- Parameter optimization study (fixed nozzle placements, optimize operating parameters)
 - 1-R Mode \rightarrow optimal flame angle/swirl \rightarrow large parameter space with negative *RI*.
 - 1-T mode (6 around 1) → 4 different operating parameters for outer nozzles → similar to nozzle staging.
- Additional considerations
 - Fixed mode shape relative to the nozzle placements (extend to dynamic mode-shapes)
 - Only axisymmetric flames (on-going work to extend to non-axisymmetric flames)
 - Overtical flow fluctuations → nozzle flow/swirler optimization for hydrodynamics/vortical-acoustic interactions that minimize RI → on-going work.

RESEARCH TASK 3.2

HYDRODYNAMIC STABILITY MODELING

- Swirling flows and flames in annular geometries exhibit range of topologies.
- Complex flow dynamics strongly affect flame stabilization and shape:
 - Flame aerodynamically stabilized in front of vortex breakdown stagnation feature.
 - Flame anchoring position highly unsteady, in contrast to stabilization at edges/corners.
 - Response of flame to imposed disturbance is materially different.
- Under what circumstances can such flames exist?
 - Not always observed; flames may blowoff directly without reverting to a "free floating" configuration
 - Flow must have interior stagnation point

BENT.ZINN

- Nonlinear bifurcation analysis
 - <u>Saddle-node bifurcations -> hysteresis</u>

When are certain families of solutions possible?

What types of solutions are possible?

BENT.ZINN

- Nonlinear bifurcation analysis
 - Saddle-node bifurcations -> hysteresis
 - <u>Hopf bifurcations -> limit cycles</u>

Low swirl: wake regime

- Nonlinear bifurcation analysis
 - Saddle-node bifurcations -> hysteresis
 - Hopf bifurcations -> limit cycles

Strong swirl: vortex breakdown regime

m=1 limit cycle

|*m*|=2 limit cycle

Nonlinear bifurcation analysis

- Saddle-node bifurcations
 -> hysteresis
- Hopf bifurcations
 -> limit cycles
- Introduce lean-premixed reactions
 - → add additional, coupled flame dynamics (e.g. flashback)

RESEARCH TASK 3.2 TAKEAWAYS

Flame shape and stabilization cannot be predicted reliably without excellent understanding of underlying fluid mechanics.

Annular swirling flows exhibit strong hysteresis and three-dimensionality, influencing both flame position and nature of flow disturbances exciting the flame

KEY ACCOMPLISHMENTS FROM EXPERIMENTS

- Designed a multi-nozzle can combustor experiment with
 - Radial/azimuthal fuel staging to control modal dynamics
 - Multiple pressure taps to characterize multidimensional transverse mode shapes
 - Chemiluminescence characterization for heat release
- Established new data analysis methods to understand the dynamic nature of the transverse modes through statistical, correlation and Fourier based analysis
- Understood correlation between heat release and excited mode during high-frequency transverse instabilities through simultaneous flame-pressure measurements
- Investigated the effects of azimuthal fuel staging on instability amplitude and its modal nature

KEY ACCOMPLISHMENTS FROM MODELING

- ✓ Flame response modeling framework
 - Response to Direct Acoustic Excitation from natural transverse modes & Induced axial excitation
 - Multiple flame configurations- axisymmetric, nonaxisymmetric, variable flame location in combustor
 - Analyzed mode amplification (non-dimensional growth rate) for different flames to different modes to understand stability bands 180
 - Nozzle and Parameter optimization studies for \checkmark individual nozzle distribution and operation
- Hydrodynamic stability modeling \checkmark
 - Internal tool developed to study hydrodynamic stability in reacting flows using FreeFEM++
 - Modeling of swirling flow instabilities

 $\Re^{[j]}$

 $\sigma^{[j]}$

0.4

0.3

0.2

0.1

-0.1

-0.2

1.5