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" Supercritical CO,-Based Power Cycles and
Long-Duration Electrical Energy Storage — Status, Challenges and Opportunities
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The promise of sCO, to displace steam
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sCO, offers higher
efficiency at lower cost

than state-of-the-art
steam
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Single phase — no drums, no concerns
over “economizer steaming”, etc.

== ECHOCEN

power systems

500

g

3 separate heat / Lo

exchanger coils L e

Temperature [C]
wa
=

00

100

5000 10000 15000 20000 25000 30000 35000
Heat Transferred [kW]

s EPS100 - WHX3 - s EPS100 - WHN? - s EPS100 - WHY] - s Exhiaist Stream

=== [Jual Rail - WHX3 = = = Dual Rail - WHX2 == = Dual Rail - WHX1
, ECHOGEN

power systems



L ;| e =
| | = B = o = [ ] = - s l= | | .
W= "= =l = m ...:. ] &l ]
- m m~  ®m- |7 «ssm- B E_nmnsg - " =-m'

Advantages of an sCO, power cycle

« Simple waste heat exchanger

« High density fluid = small equipment
« CO, properties

« Cycle flexibility

« Compact, modular

* Low maintenance

* Dry operation
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Echogen Power Systems background

Founded in 2007

Mission: To develop and commercialize a better
exhaust and waste heat recovery power system
using CO, as the working fluid

First company to deliver a commercial sCO, power

cycle
Developing a CO,- w

based electrical energy
storage system
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TC Energy / Siemens project

Supercritical COz Pilot Project - Concept Plan

® Announced by TransCanada in
March 2019

® EPS120 (uprated EPS100) on
an RB211

®  Partially-funded
by ER Alberta

®  FEED study completed,
currently under financial
review
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https://www.powermag.com/first-commercial-deployment-of-supercritical-co2-power-cycle-taking-shape-in-alberta/
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Power cycle R&D and commercialization

*  Multiple DOE- and industry-funded projects in:
*  Nuclear — Micro-reactor and large-scale power plants

*  Fossil =10 MWe indirectly-fired power plant FEED study, utility-scale oxy-coal conceptual
studies, gas turbine/sCO, control system simulations

* Solar — thermochemical energy storage (with Southern Research)

FABRIC
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* GTl-led project at
SWRI

e Goal-700°C RCB
demonstration at 10
MWe scale
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Power output|Temperature AT main HX
. . Application (MW) )
* Va r|at|0 n by Exhaust/Waste Heat Recoven 1-300 300-600 Large
° Application Indirect-Fired Power 300-1000 550-750 Moderate
) Concentrated Solar 10-150 550-750 Moderate
¢ Size Advanced Nuclear 1000+ 550-750 Small
. Temperatu re Fired cycle (Allam-Fetvedt) 25-300 1150 N/A

« sCO, cycle flexibility is one of its strengths
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						Power output		Temperature		ΔT main HX

				Application		(MW)		(°C)

				Exhaust/Waste Heat Recovery		1-300		300-600		Large

				Indirect-Fired Power		300-1000		550-750		Moderate

				Concentrated Solar		10-150		550-750		Moderate

				Advanced Nuclear		1000+		550-750		Small

				Fired cycle (Allam-Fetvedt)		25-300		1150		N/A
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Carnot vs Lorenz

Carnot cycle: Heat addition and rejection at
constant temperature, constant pressure

TC

Ncarnot = 1 T,

Lorenz* cycle: Heat addition over range of
temperatures

Te

Th,max _ Th,min
ln(Th,max/ Th,min)

Niorenz = 1-

Efficiency
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Simple recuperated cycle

100. - = T T —
External HX C 7 T ] T TBKIkgK " [T Toxmak T T : L I [ Hoskikgk 4
m - VAN SN A s T | 700kgm? | 500 kg/m? | | =7 i
L 87 A L A e W
» / [ 1ikdkgK R = T S S
* L / “ 10“0;/ ‘/V AT
r\ /0.7 kikgK |/ | LA V450
P r / A |

Recuperator

@

Condenser /
cooler

Pressure (MPa)

Motaor/gen
controller

Enthalpy (kJ/kg)

Simplest practical version of sCO, cycle
Recuperation limits temperature range of heat extraction
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Types of heat sources

* Heat flux limited
*  Primary examples — Nuclear, CSP
* Main characteristic is that unrecovered heat is recycled back to the main process
*  ThmaxThmin Can be small, results in higher efficiency cycle

* Sensible enthalpy-based
*  Primary example - WHR, CCGT
* Main characteristic is that unrecovered heat is lost to the environment
*  ThmaxThmin N€€ds to be large, results in lower efficiency cycle

* Intermediate
* High-temperature indirectly-fired cycle, CSP
* Unrecovered heat partially recycled via air preheating
*  Costimpact of low Ty, .- Th min IS important to consider
ECHOCGEN

power systems
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Nuclear application

Recirculated heat transfer
fluid fully recycled

Contal\nment Structure

T S
1 - Generator
’ et r \ "_fm = o g\ |
a‘_ -_-F'
Control
Rods
Reactor

Vessel

[ Condenser
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Recompression cycle yields hlgh heat to power -
efficiency, but very low AT

100.

External HX
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A [ﬂ“’“"‘*"”“’ Closer to constant temperature heat

cooler

%)] addition — Approximates Carnot cycle
Works well for heat flux limited source~yocen
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CSP application

Compressed 2-C0; and TES Cparation
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Integration with coal-fired power plant — LSP program

Flue Gas PHX-1

To Stack PHX-2 PHX-2 (Fired Heater)

(Existing) |«—{ Baghouse [« Scrubber 4 SCR |€ < [<—  Fuel
'y

________________

Larger AT needed

compared to RCB

* Fired heater
efficiency

* Emissions controls

* Air preheater
constraints L pp

ECHOCEN

18 | power systems 18
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Heat recovery application

Unrecovered heat lost to >
the environment

cooled
flue gas

CO2Heat Recovery Cycle

closed
loop

condenser

1t »
T »

recuperator

waste heat
exchanger

generator turbine

flue gas
supply

separateintegrated skid

[ cooling |
= water =

S

; net power
Alternate air-cooled condenser P
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itectures — increase available AT
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WHR arc
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100.

Pressure (MPa)
)
o

1.00 4L

Enthalpy (kJ/kg)

Heat extraction limitations of simple

recuperated cycle mitigated
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From http://www.21stcentech.com/mit-top-10-picks-2018-breakthrough-technologies/

Key features — zero emissions, extraction of produced CO, at
y pipeline pressure, co-production of other gases in ASU

Simpilified flowsheet
ol Combustar

- 300 bar e} en

E. 11500 o
€O, Oy L Turbine
co, e
<4005 34 bar
.”J {
7200 s |
. Qo
(R L — 1 axchanger
ASL air compres

Pressure (MPa)

100
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1000°C  1100°C  1200°C
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Enthalpy (k/kg)
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Technical challenges with sCO, power cycles

* Materials
®  WHR-500-600°C, SS good enough
®  Advanced nuclear, CSP, indirectly-fired — 700°C... is the performance benefit worth the extra cost?
* Heat exchangers
®  Represent 20-40% of the total equipment cost
®  Diversity of primary heat exchangers
* Turbomachinery
®  Rotordynamic stability (high density fluid)
° Non-ideal fluids (compressors only)
[

Direct-fired cycle
®  Combustor design, operation and control
®  Turbine cooling
®  Recuperator design, materials and cost

ECHOCEN

22
power systems
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Heat exchanger development programs

Testing- and Model- Based P i
Optimization of Coal-fired Primary '
Heater Design for Indirect Supercritical
CO, Power Cycles (DE-FE0031928)
BYU (prime), REI, Riley Power and o >
Echogen :

Key outcome is heat flux modeling and
measurement under severe conditions
with CO, as coolant/working fluid o . 2 T ~=.

Low-Cost Particle-to-CO, Moving Bed ' 5
Heat Exchanger (DE-SC0021717) |

ARPA-E HITEMMP program N 7

Multiple programs developing high-
temperature heat exchangers for sCO,
applications

i} ~ ECHOGEN

power systems
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Metal parts - Echogen turbomachinery in practice

24.7 cm diameter 16.0 cm diameter 13.0 cm diameter

3 MW, 25-30 kRPM
EPS100 compressor

10 MW, 30 kRPM 3 MW, 25-35 kRPM
EFS1OO power turbine EPS100 turbocompressor 0.4MW, 40 kRPM
: DMLS turbine
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Metal parts — GE/SwRI SunShot turbine

First operating axial sCO, turbine ... vt

Coupling

Journal Bearing Management

Max operating conditions,
27,000 rpm, 715 C and 250 bar

Forms basis of STEP turbine
design

https://www.swri.org/technology-today/extreme-turbine-technology

ECHOCEN
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Turbine design challenges

* Thrust management
* High fluid density
* Rotordynamics, cross-coupled stiffness
* Blade dynamics, especially at scale
* (Case & rotor thermal growth / ramp rate limitations

* System architecture — single vs multiple shaft, cost vs controllability vs
performance

* Bearings and seals — thermal management, internal vs external bearings,
seals

* Axial vs radial
ECHOGCEN

power systems
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Aero design challenges — non-ideal gas behavior — Z(H,P)

TN

Compressors operate in highl
non-ideal- gas condltlons

NPT LA

@f

Turbines operate innear |
|deaI -gas condltlons '

ECHOCEN
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HTC compressor aero strongly affected by real gas effects

* Advanced compressors for CO,-based power cycles and energy
storage (DE-EE0008997)
* Echogen, University of Cincinnati and University of Notre Dame

Design and test of 3-D Aero optimized axial CO, compressor

T an—
I

— A

/

Inlet Plenum

7>z Auxiliary support

Flowmeter

—— Rail Cart

> Rails
CO2 Inventory Tank
(remote)

29
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Indirect-fired applications

31

50
Clear potentia| for Signiﬁcant Steam / Reheat Cycle ~ MIsCO2 / RC-LGCycle -
gains in efficiency (3-4 points) 0=
. . . Q_)
No planned coal-fired units in P2
US 20 2
®
~100 MW of new biomass- 10 3
fired units in US under .
COﬂStI’UCtion 730°C Turbine Inlet 593°C Turbine Inlet
Temperature Temperature

International applications more

||ke| Miller, J. D., Buckmaster, D. J., Hart, K., Held, T. J., Thimsen, D., Maxson, A., Phillips, J. N., and Hume,
y S., 2017, "Comparison of Supercritical CO2 Power Cycles to Steam Rankine Cycles in Coal-Fired
Applications,” Proceedings of ASME Turbo Expo 2017, Paper GT2017-64933.

ECHOCEN
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Advanced nuclear

sCO, cycles offer limited
advantages for LWR (low heat
source temperature)

Several Gen IV high-
temperature reactors will
operate at temperatures where
sCO, gives significantly better
efficiency

Timeline for introduction...

32
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Generation IV: Nuclear Energy Systems Deployable no later than 2030 and offering
significant advances in sustainability, safety and reliability, and economics

Generation |
[ | Generation Il
Early Prototype Generation 11| Near-Term
Reactors Comr;ira%z)lrzower Deployment
i A?_‘(/?/%":d Generation 1V

Generation Ill+
Evolutionary

sU-L'u'l—‘.L'.U*““”‘l"' Designs Offering —Highly
Improved Economical
Economics —Enhanced
—Shippingport ngfety
Dresden, Fermi | —Minimal
—Dresden, Fermi _ABWR Minim;
—Magnox —LWR-PWR, BWR —System 80+ ~Proliferation
—_CANDU —-APSOO Resistant
~VVER/RBMK -EPR
Gen Il o Genlll+ | Geniv T
1950 1960 1970 1980 1990 2000 2010 2020 2030

DOENE (USDOE Office of Nuclear Energy, Science and Technology (NE)), 2002, A Technology
Roadmap for Generation IV Nuclear Energy Systems, GIF-002-00, 859029.

ECHOCEN
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Gen IV timeline

In 11 years between Tech
Roadmaps, timelines
moved out 2 to 10 years

33

GIF roadmap 2002

VHTR |

SFR i

SCWR i

MSR H

LFR :

GFR :

2000 2005 2010 2015 2020
@ Viability OPerformance i Demonstration

2025

GIF roadmap 2013

VHTR

SFR

SCWR

MSR

LFR

GFR

2000 2005 2010 2015 2020 2025 2030

@ Viability O Performance ::i Demonstration

OECD Nuclear Energy Agency, 2014, Technology Roadmap Update for Generation IV Nuclear

Energy Systems.

ECHOCEN
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Concentrating Solar Power

CSP’s primary value stems from integration
with thermal storage

Current nitrate salt systems limited to
565°C — sCO, advantages are limited,
reduced AT increases storage cost

Higher-temperature Gen3 applications are
better fit for sCO,

34
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Electric
Grid

Thermal
Sterage System

Collector
Field

Tower /
Receiver System
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Gen3 Particle-based CSP

=

Receiver uses falling “curtain” of particles
(bauxite) to both collect and store thermal
energy at ~ 750°C Particle hot storage

. . tank
sCO, power cycle is integral part of i
teC h n O I O gy heat exchanger

Key Cha”enge B partiC|e to COZ heat Particle cold storage
exchanger o

Timeline to a commercial product...

L] (e ». =

e

-

Falling particle receiver

From SAND2019-9921PE

ECHOCEN

” power systems



C m lt;—iT:T*T-:;ii:;E_:-:;.-.'1-!'.

CSP — Heliogen Integrated TESTBED

SETO award to demonstrate thermal
storage with sCO, power cycle at
5 MWe scale

Turbine inlet temperature = 600°C

Other project details (e.g., storage
media) not disclosed

Decarbonizing Industry with Al-enabled Solar Energy + Storage

@ Heliogen W Woodside

From https://heliogen.com ECHOGE N

36 power systems
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CCGT applications - sCO, vs steam

37
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Installed cost/kW (normalized)
(=]
=]

e
3

e
o

[y
L

Power optimized

Cost optimized ©“ m steam
O 2x1 7FA
— 5GT800
— | M2500P)

e
~

‘ ‘ T T ‘
0.8 0.9 1 1.1 1.2
Net power (normalized)

Held, T. J,, 2015, “Supercritical CO, Cycles for Gas Turbine Combined Cycle Power Plants,” Power
Gen International, Las Vegas, NV.

* 10-20% lower cost for same power

* 7-14% higher power for same cost

ECHOCEN
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CCGT value proposition — can we get from 10 MW to 100+7?

 Installed-cost analysis of
existing SCGT and CCGT
systems

 Significant drop in cost/kW for
bottoming cycles

* Need to establish technology
at smaller scales to make the
leap to larger scales

38

Owners cost / kW

$3,500

$3,000

$2,500

$2,000

$1,500

$1,000

$500

s$-

®SCGT

® Bottoming cycle

1000 10000

100000 1000000

Power (kW)

ECHOCEN
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LCOE analysis

2x1 7FA-04, 8000 hrs/year 540 MW
Break even=$0.87/MMBTU

LCOE components:
*  Amortized capital cost
* Fuel cost
*  Other O&M
* Usage (hours / year)

—SCGT

Bottoming cycle
200

E (S/MWh)

9 100

e LCOE linear in fuel cost for SCGT “

* Bottoming cycle LCOE independent
of fuel cost 0 5 10 15 20 2

Fuel cost ($/MMBTU)

LC

* Breakeven point = fuel cost below which power from CCGT costs more
than from SCGT
ECHOCEN

power systems
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LCOE analysis, continued

250

200

iy
v
o

LCOE ($/MWh)

50

40|.

1x1 LM2500, 8000 hrs/year 1x1 LM2500, 2000 hrs/year 31 MW
Break even=$2.42/MMBTU Break even=$9.69/MMBTU
300
= SCGT e SCGT
Bottoming cycle 250 Bottoming cycle

200

150

LCOE ($/MWh)

100

/ 50

0

0
5 10 15 20 25 0 5 10 15 20 25

Fuel cost ($/MMBTU) Fuel cost ($/MMBTU)
Smaller systems have higher relative bottoming cycle capex,
drives breakeven cost higher

Impact of usage on breakeven fuel cost is critical ASthirc il
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Improvements with sCO, bottoming cycle

12
-4.2% LCOE

ﬁ 1.1 /2.1 points h
o -
E Power optimized -4.1% LCOE All at $5/MMBTU,
£ 1 | +2.5 points h
5 pot 8000 hrs/year
g Cost optimized B Steam
< 09
= 2x1 7FA
3
S _— —— SGTS800
3 0.8
= . e LM2500P)
B -1.1% LCOE -4.4% LCOE
= 07 +0 points h +0 points h

0.6 T T T T 1

0.7 0.8 0.9 1 1.1 12

Net power (normalized)

sCO, power cycles can deliver improved LCOE across the board
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CCGT applications — a difficult market

GT orders have fallen significantly LM6000 Orders - Worldwide 1990 —2020
H “Orders” exclude redeployments
NG costs have remained ~ $2-4 per UNitS ™o arginl eporteasite in USA during 2018.2020
. . 175
MMBTU since 2010, reduces economic 5o | M@ No HRSG  [Total Reported Orders 1122
incentive to improve efficiency s LONHRSG | KISl
Hydrogen-fired GTs offer a potential 100
long-term opportunity i
50
* $1/kg (DOE target) is equivalent of ~ ’s ‘ H
$8/MMBTU 0 _____ IIII IIIII IIIIIIIIII-I
*  Will significantly improve value 1990 1995 2000 2005 2010 2015 2020
prOpOSition Of bottoming CyC|e, even at Axford Turbine Consultants LLC  Rev Apr 2021

shorter firing hours
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Industrial waste heat recovery

* Broad spectrum of potential applications
« Tend to be in the 1-20 MWe range
« sCO, is an excellent technical fit

« Economics have always been challenging
* New ITC helps (26% through 2022, 22% in 2023)
« Carbon incentives could play critical role
« Competing for “Green Dollars” with other renewable generation

ECHOCEN
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Electro-Thermal Energy Storage: Electricity stored as heat & cold

Thermodynamic cycles transform Charging

energy between electricity and heat

Charging cycle

* Heat pump cycle

* Uses electrical power to move heat from
a cold reservoir to a hot reservoir

» Creates stored energy as both “heat”
and “cold”

Generating

Generating cycle

* Heat engine cycle

* Uses heat stored in hot reservoir to
generate electrical power

* "Cold" energy improves performance of

heat engine
ECHOCEN
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HTRh HTRc HTRc

Charging cycle Generating cycle

©
® ®
LTRh
Turbine Compr Pume Turbine
® O]
B ®
§p e @ =U CX
L R QRX
Heat Pump Cycle Overall Process Power Cycle
e COP = Qh/Echg RTE = Egen/Echg e Efficiency = Egen/Qh
Ideal COP = 1/(1-Tc/Th) = COP x Efficiency Ideal efficiency = 1-Tc/Th
Ideal cycle RTE = COP_,, ot X Ncarnot = 100%
s | Non-ideal processes result in RTE ~60%, even at modest temperature ratio Egv'jr?ﬁfm"!
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Thermodynamic properties and operating state drive

reservoir selection

‘ \||ll.ﬂ\‘g';l,lww‘\'\"(’ "5"
Fo "FI | [ .‘ “ \ "\ ﬂ. \ T": 400
HTX heat transfer is o [." | \,‘ i =
supercritical - sensible | | ‘ N
enthalpy transfer ) |’ | 2
interaction with HTR 2l | A £
- o er Vb ‘I I\l ‘\: gzso
LTX is subcritical - A ’lj -
condensation and ARERRRRERE .
evaporation - ~ constant | R \ e
. . Vo \ \ l \ | Generating cycle 0
te.mperature Interaction RERRRRERR \ | \ IIENEERN RN . LTX/LTR (c,~ o)\,
Wlth LTR Enthalpy 050 1.00 1.50 2.00 2550
Entropy (kJ/(kg-K))
Ice/water equilibrium and sand reservoir materials = low cost, low impact
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Low $/kWh reservoir costs drive competitive advantage

$500
$450
$400
$350
$300
$250

$200

Capex (S/kWh)

$150
$100

S50

s |

2030lo
. 100 MWe, 10 hrs
2030lo Capex Comparison, 100 MWe s0.12
Charge/generate 010
equipment costs s o&m
Eﬂ $0.08 Augmentation
§ Electricity
5 %006
§ BOP
E O&M
g 50.04 Installation sy
——Liion Reservoir costs $0.02 inglltion
(02 ETES > .
Generation
$0.00 o
5 10 15 20 .
Li ion

Hours of storage

Lower Capex, no augmentation costs => Lower LCOS

CO2 ETES
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ARPA-E DAYS Program — PTES Proof of Concept

« 2-tank heat transfer fluid HTR
* lceslurry LTR

Commissioning end of Sept 2020
* Complete testing October 2020

~200 kWth system, including both charging and generating cycles Initial build

High-Temperature
Reservoir (HTR)

* Build and test sand HTR system
+  Complete April 2022

Primary developmental focus:
* HTR and heat exchanger (TRL 4)
* LTR performance (TRL 4)

Low-Temperature » Operation and controls

Reservoir (LTR)

25 MW, 8-10-hour system in prelim
design

CO, heat pump )
& power cycle |
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Key takeaways

 Significant development effort in sCO, power cycles and
systems has addressed many of the technical risks, and more
continues

« Economics of market entry, low fuel prices, and long
advanced application development time scales have hindered
commercialization

* Future developments in high-temperature sCO, indirect
cycles, oxy-fired sCO, cycles, energy storage in the works

ECHOCEN
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