

MINING & METALS NUCLEAR, SECURITY & ENVIRONMENTAL ENERGY INFRASTRUCTURE & POWER S. C. (John) Gülen, Bechtel Fellow

Bechtel Infrastructure & Power, Inc.

Gas Turbines Past, Present & Future (Efficiency Focus)

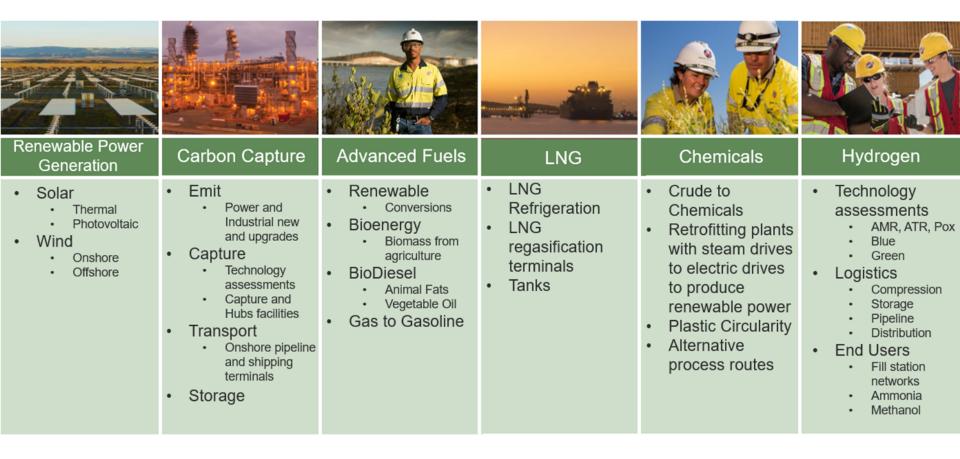
November 10, 2021

Day 3 in 2021 UTSR Project Review Meeting - Virtual

Speaker Background

25 years in gas turbine technology...

- ESPC, Inc. (CHAT cycle, 110 MW CAES Plant in McIntosh, Alabama)
- Thermoflow, Inc. (GT PRO/MASTER, THERMOFLEX, PEACE Software)
- General Electric (H-System, 109FB-SS GTCC, Duke Edwardsport 207FB
 - IGCC, Advanced HA Class GTCC)


- Bechtel Fellow
- 50+ Papers & Articles
- Two Book Chapters
- 14 Granted US patents
- Three Books
- ASME Fellow

Bechtel Today – Energy Transition

What we (I) do these days...

Transformational Energy Projects

Some examples...

Keeyask Generating Station, Canada

Role: Project Management, Construction

The Bechtel-led BBE Hydro Constructors Limited Partnership is delivering this new 60 MW powerhouse. As the centerpiece of the Keeyask Generation and Infrastructure Project, its seven turbine units will provide enough renewable energy to power 400K homes. The project involves massive castin-place concrete structures – chiefly a spillway and the powerhouse structure – totaling more than 330K m³

Black Rock Wind Farm, USA

Role: Engineering, Procurement, and Construction

The project will include twenty-three Siemens-Gamesa SG 5.0-145 wind turbines on 107.5-meter tall towers, producing 115 MW of electricity at the point interconnection to the First Energy electrical grid.

Niger Delta Off-Grid Solar

Role: Collaboration with Chevron

Scale-up of an off-grid solar initiative in two remote communities in the Niger Delta. INVEST Project at USAID, Chicago-based Sun Africa, and Tesla are engaged. This program is based on Chevron's "energy in a box" solution.

Ivanpah Solar Electric Generating System, USA

Role: Project Management, EPC, Startup Services

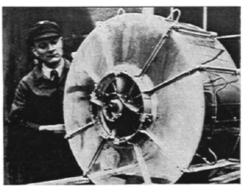
The 377 MW Ivanpah Solar Electric Generating System is the world's largest solar thermal facility. It will produce enough clean, renewable electricity to power 140K homes. Bechtel built and procured the solar field, which includes 173.5K heliostats that follow the sun's trajectory, solar-field- integration software, and solar-receiver steam generators. Ivanpah has nearly doubled the amount of commercial solar thermal energy generated in the USA.

Carbon Capture

Role: Policy Study Contributor

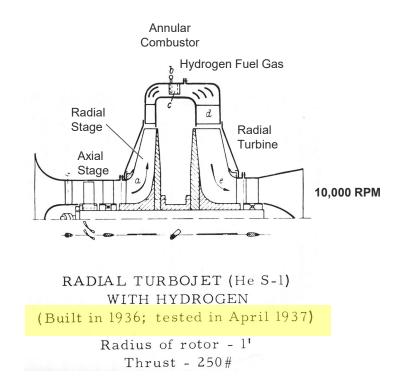
National Petroleum Council Studyassist the Steering Committee in conducting the study and coordinating the work of multiple study teams and subgroups focused on specific subject area

Role: FEED study for Gassnova, Karsto, Norway


The Kårstø facility was designed to capture 85 percent of the CO2 emissions from a 420 MW gas-fired power plant in southwest Norway. Kårstø was to be the larges tCO2 separation facility ever constructed for treatment of gas turbine exhaust gas.

It Began with Hydrogen...

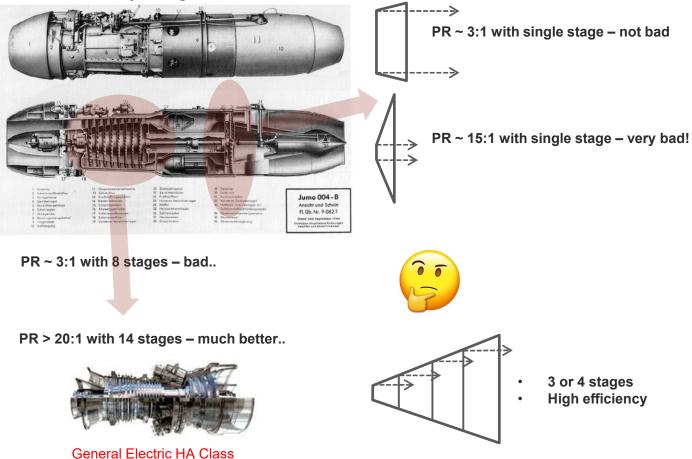
Heinkel HeS (Heinkel Strahltriebwerk) 1

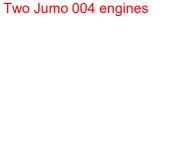


Hans Joachim Pabst von Ohain (1911-1998)

Max Hahn (von Ohain's Chief Mechanic)

Hydrogen was chosen because of its high flame velocity and wide combustion range. It performed quite well at offdesign as well as transient operation (startup and shutdown).



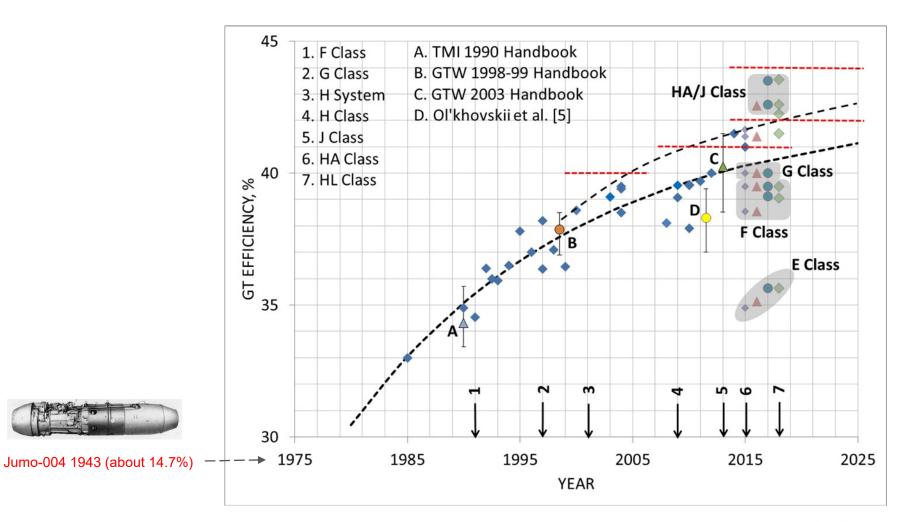


In Less Than Ten Years

Jumo 004 turbojet engine in Messerschmitt Me 262 (1944-1945)

Same machine 75 years ago...

arman


Messerschmitt Me 262

Simple Cycle History 1985-2021

Step change in the last decade...

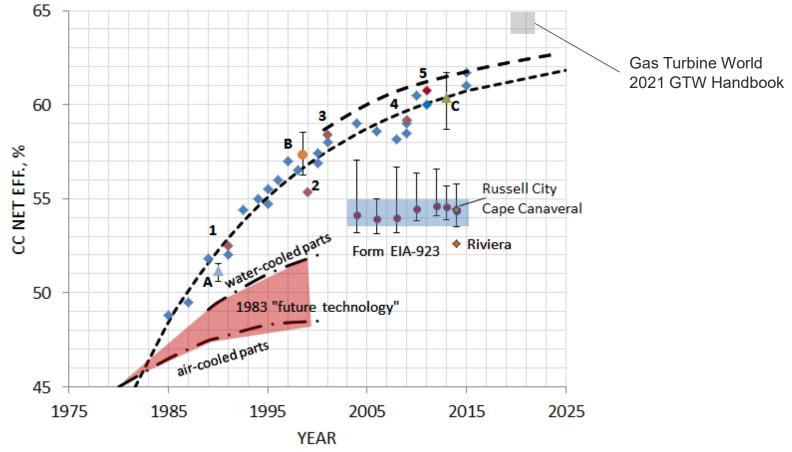
7

Gas Turbine Class Hierarchy

Turbine Inlet Temperature & Cycle Pressure Ratio

- E Class 1,300°C TIT (PR = 12:1)
- F Class 1,400°C TIT (PR = 15:1)
- G Class 1,500°C TIT (PR = 20:1)
- H System 1,500°C TIT (PR = 23:1)
- H Class 1,500°C TIT (PR = 21:1)
- J/JAC Class 1,600°C TIT (PR = 23:1)
- HA Class 1,600°C TIT (PR = 23:1)
- HL Class 1,600°C TIT (PR = 24:1)

PR – Cycle Pressure Ratio G, J and H System have steam-cooled hot gas path parts H System is discontinued


TIT values are introductory; HA, J/JAC and HL class are now 1,650+°C (PR 25:1 for J/JAC)

9

Combined Cycle History 1985-2015*

Step change in the last decade

(A: TMI 1990 Handbook, B: GTW 1998-99 Handbook, C: GTW 2013 Handbook, 1: Ambarli, Turkey, 2: Tapada do Outerio, Portugal, 3: Mainz Wiesbaden, Germany, 4: Kawasaki, Japan, 5: Irsching, Germany.) Actual U.S. gas-fired GTCC generation data includes duct-fired units.

*: from Gülen, S.C. "Étude on Gas Turbine Combined Cycle Power Plant – Next 20 Years", GT2015-42077 ASME Turbo Expo 2015, June 15-19, 2015, Montréal, Canada

GTW Handbook 2021 Rating Data

Getting close to 65% net LHV in combined cycle...

	60	Hz	50 Hz		
	Output, Efficiency,		Output,	Efficiency,	
OEM	MW	%	MW	%	
A	369	42.3	538	42.8	
В	430	43.3	571	44.0	
С	435	44.0	574	43.4	
D	405	42.6	593	42.8	

SIMPLE CYCLE

COMBINED CYCLE

	60	Hz	50 Hz		
	Output, Efficiency,		Output,	Efficiency,	
OEM	MW	%	MW	%	
A	520	62.3	760	62.6	
В	647.9	63.9	848	64.1	
С	631.8	> 64.0	842.5	> 64.0	
D	595	> 63.0	870	> 63.0	

"World Record" Holders

Read the "small print"

- Irsching (Siemens 50 Hz H, 2011) 60.75% (small print: 0.6 in. Hg backpressure, cooling water from the Danube)
- Bouchain (GE 50 Hz HA, 2016) 62.22% (small print: old coal plant's natural-draft cooling tower)
- Nishi Nagoya (GE 60 Hz HA, 2018) 63.08% (small print: gross, once-thru seawater cooling)
- Lausward (Siemens 50 Hz H, 2015) 61.5%

When the Rubber Hits the Road

Real life... it hurts

- From EIA Form 923 Data (Publicly Available)
- 2017 January to September
- H Class Rules But...

	OEM	Class	Config	Generation	Fuel Cons.	Heat Rate	Efficiency	Efficiency
						Btu/kWh		
				MWh	MMBtu HHV	HHV	% HHV	% LHV
Panda Temple	Siemens	SGT6-5000F	2 (2x2x1)	2,315,620	16,954,109	7,322	46.60%	51.68%
		SGT6-5000F						
Stonewall	Siemens	EE	2x2x1	2,159,244	15,275,314	7,074	48.23%	53.49%
Wolf Hollow II	GE	7HA.02	2x2x1	2,315,067	16,682,609	7,206	47.35%	52.51%
Colorado Bend								
II	GE	7HA.02	2x2x1	1,983,351	13,060,540	6,585	51.82%	57.46%
Riviera Beach	Siemens	SGT6-8000H	3x3x1	5,482,523	36,275,531	6,617	51.57%	57.19%
Cape								
Canaveral	Siemens	SGT6-8000H	3x3x1	5,413,559	36,020,550	6,654	51.28%	56.87%

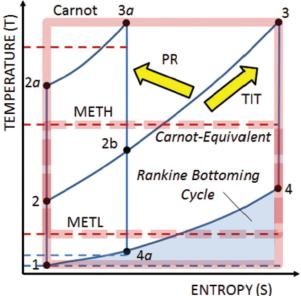
The "Hall of Fame"

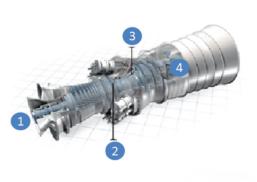
Best in class...

- General Electric (GE) HA Class
- Mitsubishi Power (MP) J/JAC Class
- Siemens HL Class
- Ansaldo GT36 (J Class) Not Focused in 60-Hz Market

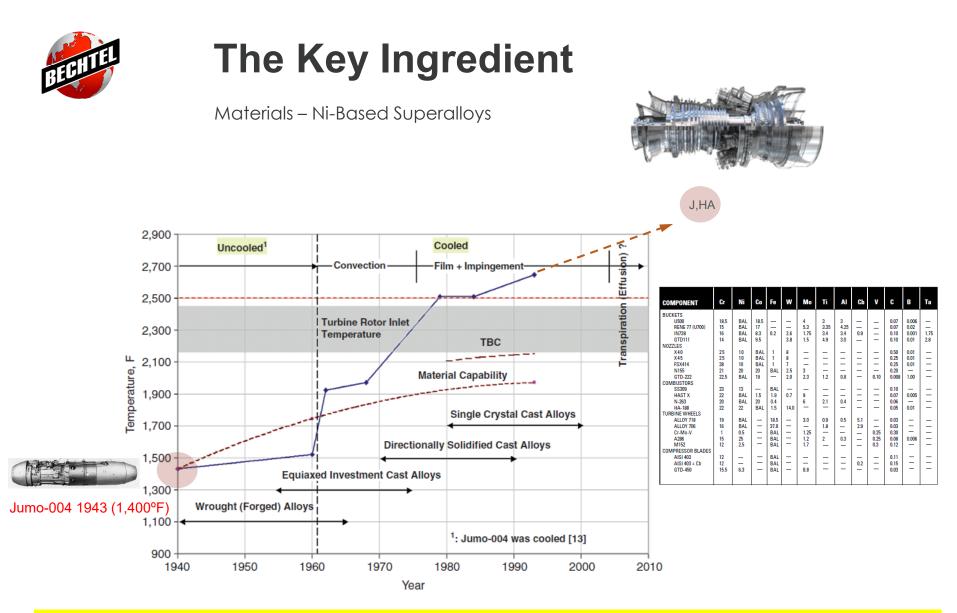
Still Hanging Around...

- GT24 (60 Hz) and GT26 (50 Hz) Sequential Combustion
- GT26 HE Package Offered By GE
- GT24 Is Not Offered New



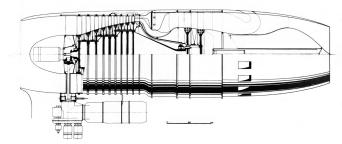


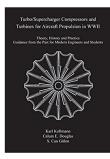
Two Parameters: TIT and PR


Thermodynamics 101

- Biggest Gas Turbine Efficiency Effector is Cycle Pressure Ratio (PR)
- Biggest Gas Turbine Combined Cycle Efficiency Effector is Turbine Inlet Temperature (TIT)
- There Is An Optimum Combination of TIT-PR
- Today's State-of-the-Art is 1,600°C and 23:1
- Next Goal Is 1,700°C and 25:1

*: Nominal Values!!


Side benefit of cooling: Hollow blades \rightarrow Less materials/weight!!


Other Challenges

Same as it ever was...

- Higher TIT
 - More NOx
 - More Hot Gas Path Cooling
- Higher PR
 - Higher Air Temperature
 - Bigger Compressor

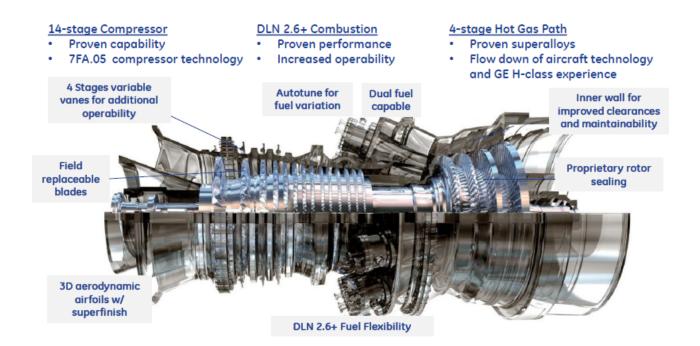
Daimler-Benz DB 016 1944 (1,562°F TIT, 7.7:1 PR) 13,000 kg thrust, for "Very Fast Bomber"

Jumo-004 1943 (1,400°F TIT, PR of about 3:1)

Me-262 with Twin Jumo-004

Everything needed was known from the get-go!!

Same as it ever was...


- Materials (Superalloys, CMC)
- Advanced Film Cooling
- Thermal Barrier Coating (TBC)
- Casting (Single Crystal)
- 3D Aerodynamics
- Advanced Seals
- Tight Clearances
- Model-Based Adaptive Control

Technology Enablers – I

OEM A

Technology Enablers – II

OEM B

Single-tie bolt Rotor

Proven rotor design with internal cooling air passages for fast (cold) start and hot restart capability Rotor Air cooler allows use of proven steel disc design Easy rotor de-stacking on site due to disc assembly with Hirth serration and central tie rod

12- stage compressor

- Variable-inlet Guide Vanes and two stages of fast-acting Variable-pitch Guide Vanes (VGV) for improved part load efficiency and high load transients
- Third generation harmonized compressor
- High efficiency due to evolutionary 3D blading All rotating compressor blades replaceable without rotor lift or rotor de-stacking

Bearings

Hydraulic Clearance Optimization (HCO) for reduced degradation and clearance losses

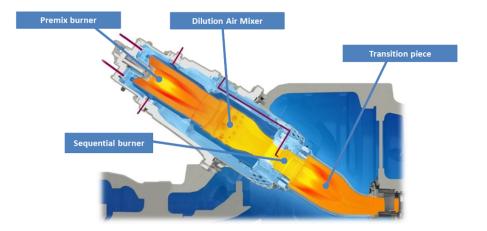
Combustion

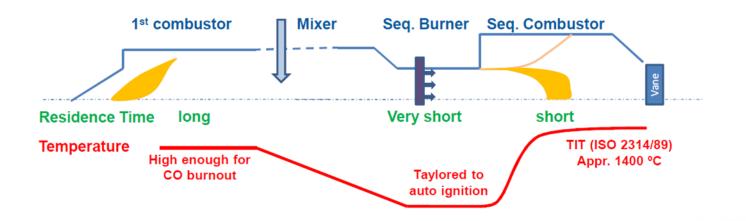
Advanced can annular combustion system with dual-fuel capabilities (12/16 combustors)

4-stage turbine

High cycling capability due to fully internally air-cooled turbine section Super-efficient internal cooling features for blades and vanes 3D four-stage turbine with advanced materials and thermal barrier coating All turbine vanes and blades replaceable without rotor lift; vane 1, blades 1 & 4 replaceable

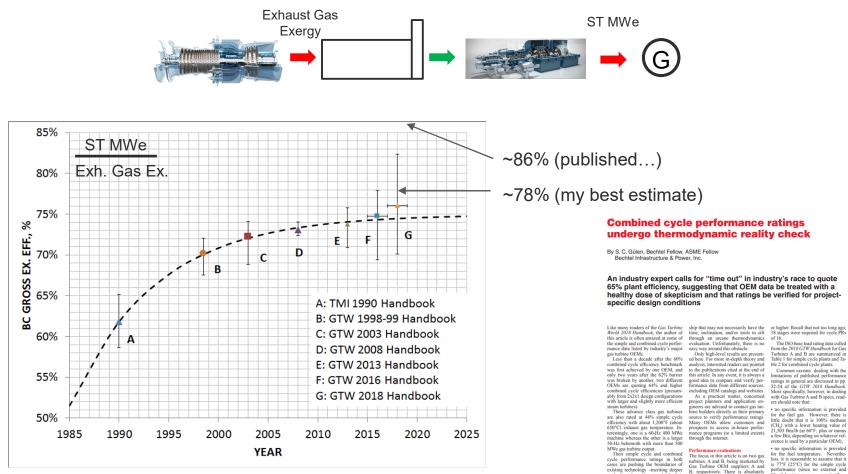
Flexibility Performance Serviceability


without cover lift



Axial Fuel Staging

OEM C: Reheat without HP turbine



20

Bottoming Cycle History

One third of GTCC output...but, read the fine print!

analysis and scrutiny to check their

In this article, the author will try to do a forensic analysis of cited per-

formance ratings using fundamental thermodynamic arguments, with the help of a renowned commercial cycle analysis software package to establish

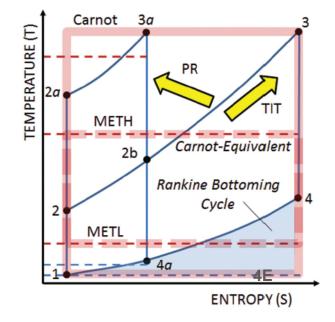
Granted, this article appears in a

publication with a professional reader-

Ratings reality check


some reality check points.

and machining technologies used to manufacture hot gas path components, advanced film cooling techniques, plus 3D aero design tools to achieve · both OEMs state that inlet and exhaust losses are included but they are not specified. This is not a big im-pediment from a heat and mass balefficient compression in only 14 stages with a cycle pressure ratio (PR) of 23 from simple to combined cycle there



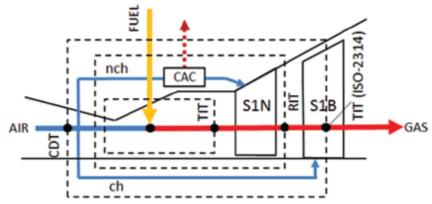
What Is Reasonable?

Thermodynamics speaks...

Table: Projected combined cycle efficiencies						
TIT, C	1,500	1,600	1,700			
TIT, F	2,732	2,912	3,092			
PR	18	22	25			
T3/T1	6.15	6.50	6.84			
X (see Figure 1)	2.69	2.69	2.73			
Carnot	83.7%	84.6%	85.4%			
Brayton	56.2%	58.7%	60.1%			
Brayton "Enhanced"	74.4%	75.8%	76.8%			
Combined Cycle, TF=0.825	61.4%	62.5%	63.4%			
Combined Cycle, TF=0.85	63.2%	64.4%	65.3%			

Brayton Cycle "Enhanced" Brayton Cycle

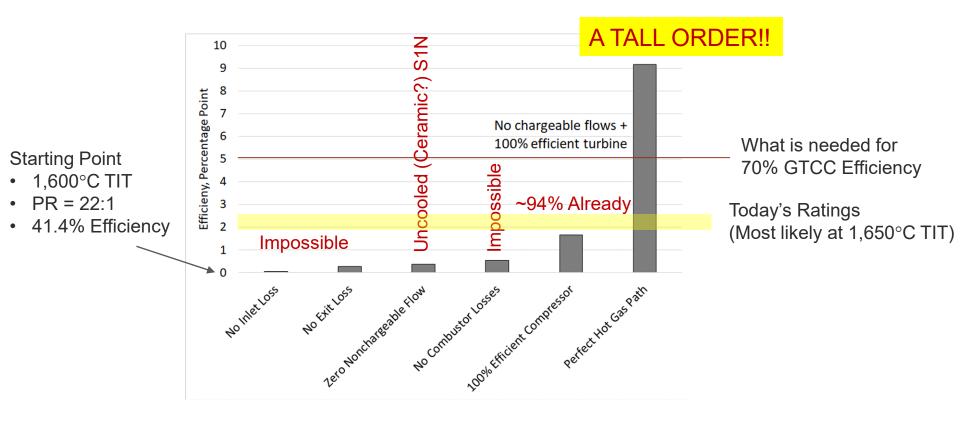
Technology Factor (Gütegrad) Ratio of Actual Efficiency to Ideal "Carnot" Efficiency TF = 1 \rightarrow You built a Carnot engine!!!


Are We There Yet?

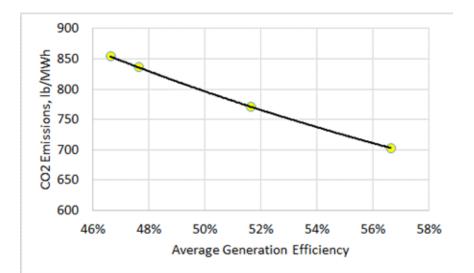
65% net LHV, that is... Almost...

OEM B 60 Hz – GTW 2021 Handbook Data Gas Turbine Heat Balance Analysis

Output, kW			430	000		
Efficiency, %		430,000 43.3				
Exhaust Flow, lb/s				'18		
Exhaust Temperature, °F				217		
Cycle Pressure Ratio			23			
Chargeable Flows (ch)		12%	12%	10%	10%	
Non-chargeable Flows						
(nch)		12%	10%	10%	9%	
тіт	°F	3,110	3,064	3,020	2,999	
111	°C	1,710	1,685	1,660	1,648	
Firing Tomporature (DIT)	°F	2,860	2,860	2,824	2,824	
Firing Temperature (RIT)		1,571	1,571	1,551	1,551	
S1N DT	°F	250	204	196	175	
ISO-2314 TIT	°C	1,461	1,461	1,461	1,461	
130-2314 111	°F	2,662	2,662	2,662	2,662	


CDT: Compressor Discharge Temperature TIT: Turbine Inlet Temperature RIT: Rotor Inlet Temperature CAC: Cooling Air Cooler S1N: Stage 1 Nozzle (Vane) S1B: Stage 1 Bucket (Blade) ch: Chargeable Cooling Flow nch: Non-chargeable Cooling Flow

Gas turbine stairsteps to 70% net LHV GTCC efficiency...



Why Efficiency Is Important – I

Significant reduction in CO₂ emissions...

	Year 2019 (US EIA Data)							
	10^6 mt CO ₂ per quad Btu	Average Heating Value Btu/cuft, MMBtu/st	Consumption: 10^9 cuft/day, 10^6 st	CO ₂ , short tons/year	CO ₂ per Heating Value, lb/MWh			
Natural Gas	52.9	1,035	30.7	677,069,717	398			
Coal	96.3	19.149	537.6	1,092,793,028	724			
	Average Efficiency	CO2 per MWh Generated, Ib/MWh	Generation: 10^6 MWh/day	Generation: 10^6 MWh/year	CO ₂ , short tons/year			
Natural Gas	46.6%	854	4.345	1,586	677,069,879			
Coal	32.0%	2,265	2.644	965	1,092,793,289			

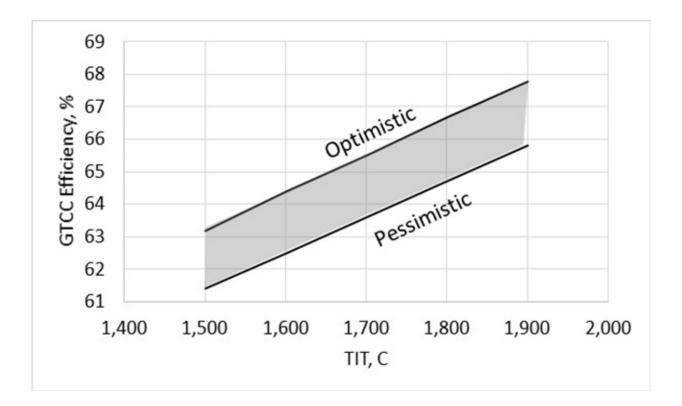
If average efficiency were higher by one percentage point, 14 million ton less CO_2 would be emitted

Efficiency	CO ₂ , st/year
46.6%	BASE
47.6%	-2.1%
51.6%	-9.7%
56.6%	-17.7%

Why Efficiency Is Important – II

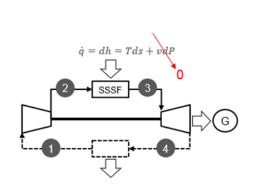
Hydrogen angle – 60 Hz 1x1x1 GTCC example

GTCC Output	600	MW
H_2 LHV	119,987	kJ/kg
Electrolysis	55	kWh/kg
SMR	9.2	CO_2/H_2


СС	CC Heat Consumptio				
Efficiency	n		Fuel Flow	Electrolysis	SMR CO ₂
	MWth	kg/s	kg/h	MW	kg/h
60%	1,000	8.33	30,003	1,650	276,031
61%	984	8.20	29,511	1,623	271,505
62%	968	8.07	29,035	1,597	267,126
63%	952	7.94	28,575	1,572	262,886
64%	938	7.81	28,128	1,547	258,779
65%	923	7.69	27,695	1,523	254,797
66%	909	7.58	27,276	1,500	250,937
67%	896	7.46	26,869	1,478	247,192
68%	882	7.35	26,474	1,456	243,556
69%	870	7.25	26,090	1,435	240,027
70%	857	7.14	25,717	1,414	236,598

*: Total wind power generation in USA in 2020 was 338,000 GWh – say, 350,000 GWh Assuming 5% curtailment, 17,500 GWh can be diverted to H₂ production This can support about two 600 MW GTCC plants (at η =60%) for 5,000 hours/year or three of them (η =70%) for 4,000 hours/year.

70% GTCC efficiency seems elusive...


NEED A NEW MOUSE TRAP!!!

Constant Volume Combustion

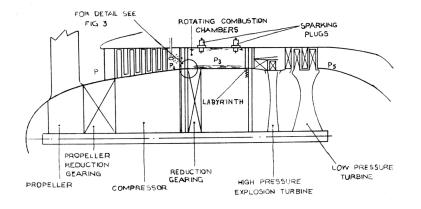
A change in gas turbine cycle...

 $\dot{q} = dh = Tds + vdP = \gamma Tds$

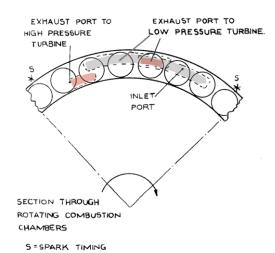
G

	BASE	PRESSURE GAIN COMBUSTION				
GTG Output, kWe	339,531	438,104	418,721	398,958	405,541	
Heat Input, kWth	819,518	892,497	857,284	821,360	848,679	
GTG Efficiency	41.43%	49.09%	48.84%	48.57%	47.78%	
T _{exh} , ℃	629	612	593	573	595	
m _{exh} , kg/s	700	702	701	700	701	
Precompression PR	NA	13.6	13.6	13.6	11.9	
P ₂ , bara	24.8	13.8	13.8	13.8	12.1	
T₂, ℃	490	371	371	371	346	
PDC PR	NA	1.854	1.810	1.765	1.821	
Cycle PR	23.1	25.2	24.6	24.0	21.7	
TIP, bara	23.4	25.6	24.9	24.3	22.0	
TIT, ℃	1,593	1,593	1,538	1,482	1,482	
STG Output, kWe	173,722	166,265	156,082	145,705	157,194	
CC Gross Output, kWe	513,253	604,369	574,803	544,663	562,735	
Plant Aux. Load, kWe	7,912	24,672	23,001	21,330	19,662	
CC Net Output, kWe	505,341	579,697	551,802	523,332	543,072	
CC Net Efficiency	61.7%	65.0%	64.4%	63.7%	64.0%	

Thermodynamically, a 'no-brainer'! Practical implementation difficult... (especially in aircraft engines) Most likely candidate: Detonation combustion

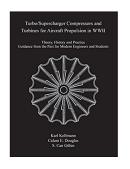

- Pulse(d) Detonation passé
- Rotating Detonation current focus

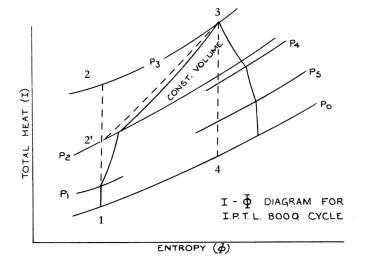
Pressure Gain Combustion Advantage in Land-Based Electric Power Generation, S.C. Gülen, GPPF2017-0006, 1st Global Power and Propulsion Forum, GPPF 2017, Jan 16-18, 2017, Zürich, Switzerland.



Detonation Combustion

Not a new idea... in 1940s Germans looked at it...




BMW IPTL 8000 – Turboprop engine with detonation combustion

GE-NASA multi-tube pulse detonation combustion turbine rig

Closing Remarks

- Today's GTCC technology is getting close to 65% net LHV (ISO Base Load Rating)
- Actual US NG fleet performance is much lower barely 47%
- Best in class GTCC field performance is around 57%
- Each percentage point is worth 14 million tons of CO₂
- For a GTCC (60% capacity factor, 100% H₂), each percentage point improvement saves 2,500 metric tons of H₂ annually
- "Constant pressure combustion" Brayton cycle, after 80+ years, is near the end of its technology "S curve"
- For the next "goal post", 70% net LHV (ISO Base Load Rating), a new cycle is needed
- The best candidate is "constant volume combustion" (CVC) cycle
- The best candidate for practical implementation of CVC cycle is detonation combustion

