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Overarching objectives

e Objective 1:
Develop and demonstrate a low-loss fully axial injection concept,
taking advantage of stratification effects to alter the detonation
structure and position the wave favorably within the combustor

e Objective 2:
Obtain stability and operability characteristics of an RDE at fixed and
transient operating conditions, and determine performance rules for
full-scale operations

e Objective 3:
Develop quantitative metrics for performance gain, as well as
guantitative description of the loss mechanisms through a
combination of diagnostics development, reduced-order modeling,
and detailed simulations



Expected outcomes: RDE physics advancements

e OQutcome 1:
A comprehensive study of the stability and operability of high AAR
designs under engine-relevant conditions

e OQutcome 2:
A low-loss inlet design with optimal placement of detonation wave
to promote efficiency gain

e OQutcome 3:
Methods for estimating effective pressure gain realized

e OQutcome 4:
A suite of computational tools for modeling full-scale RDEs, including
an Al-based acceleration for long duration simulations

e OQutcome 5:
Demonstration of efficiency improvement (gain) using a
methane/syngas mixture RDE



Objectives and tasks

Pressure Gain, Stability, and Operability of Methane/Syngas
Based RDEs Under Steady and Transient Conditions

v
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Objective 1 Objective 2 Objective 3
Low-loss injector based RDEs for Stability and operability characteristics Develop tools for quantitative
methane/syngas operation at elevated of RDEs at fixed and transient diagnostics, estimation of
pressure/temperature conditions performance, and design optimization
(" )
Task 2.1 Task 3.1 Task 4.1
Effect of stratification/fuel composition Operating map of RDEs and transition - Development of validated quantitative
on detonation structure between different operating conditions > tools for estimating pressure gain
l based on measurements
Task 2.2 Task 3.2
—> Injector design for minimizing >| Stability of system to perturbations in Task 4.2
parasitic/commensal combustion boundary and/or operating conditions —>| Imaging-based quantification of RDE
losses
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Task 2.3 Task 3.3
—>| Develop design rules for performance Develop design rules for operability Task 4.3
and scalability and stability for integrated systems Development of Al-based accelerated
models for long term computations
Task 4.4
Development of CFD-based design
tool using Bayesian optimization

AIR INLET / FUEL FIXED AND TRANSIENT METHODS

INJECTOR DESIGN OPERATION & PERFORMANCE DEVELOPMENT

ADVANCING PHYSICAL UNDERSTANDING SOURCES OF GAIN AND LOSS
&
INVESTIGATING REALIAZABLE GAIN IN FIXED AND TRANSIENT CONDITIONS
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RDE experimental infrastructure at U-M

e Modular baseline RDE
— Developed under previous projects

— Operational with H2/Air, various flow rates and equivalence ratiq
— Operation for multi-component fuels

— Able to generate transient operation (flow rates, equivalence
ratio, composition)

Fully-axial, enhanced RDE

—Operational, designed for improved operation
e Management of non-ideal behaviors

—Transient operation
—Undergoing redesign to extend transient operation

e Optical RDE (Race-Track RDE)
— Operational
— Equivalent to 12” round RDE

— Used for flowfield measurements under RDE
relevant conditions




Our contribution for the year

e Continued the investigation of H2/C0O2 and H2/CH4 mixtures
— We have built from last year’s work

— Focus on secondary wave suppression, and modification of secondary combustion

Investigated inlet temperature effects on H2/air operation
— Identified changes in stability properties

— Mode of operation changes as inlet temperature increases
e From stable single wave to slapping wave

— We need to refine some of the analysis tools for slapping wave modes
e Continued the investigation of pressure gain and losses in RDCs
— Some improvements on thrust measurements made, more in preparation
e Characterized and investigate new axial air inlet RDC configuration at different
inlet area ratios
— Focus for today’s discussion

Investigated the response properties of the air inlet

— Developed a one-dimensional model to describe the propagation of disturbances into the
air plenum



From the past: impact of combustion losses

e Develop and investigated an axial air
inlet design
—Operation
— Performance (based on thrust)
 Investigated and identified non-ideal
effects as limiting processes

— Deflagration losses

Detonation wave
«— OH chemiluminescence
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— Parasitic/commensal combustion

e Based on what learnt, we have
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From the past: impact of secondary combustion

Apply a reduced RDE model (state-to-state thermodynamic model)

Post-detonation pressure and wave speed
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Improvements on our thrust measurements

e Developed a second generation thrust measurement device

— Resolves some of the known uncertainties and systematic errors
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Pressure Gain and Heat Release
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Effects of exit nozzle restriction
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Link between pressure gain and inlet pressure loss
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Characterization of new configuration

Aa

* Inlet area
e Channel profile
* Exit restriction
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From steady no-fuel flow (cold flow)
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Characteristics of Inlet in Non-Reacting Flow

Static Pressure Ratio, (Py — Pex)/ P
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Estimation of air inlet blockage
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Operable conditions all have M, =1
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Working on developing a measure of Relative Wave Quality
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e Based on Circuit Wave Analysis from high-speed video
— Used to classify and quantify primary and secondary wave systems

e Relative Wave Quality metric was devised to condense CWA data to single quantity
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Working on developing a measure of Relative Wave Quality
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Assessing inlet temperature effects
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Operation mode changes at higher inlet temperature

e H,/air operation
— Area ratio of 4 and no nozzle

452 0.5 320 - 467
552 0.6 295-410
552 1 319-420

e Observations
—Transition to slapping mode

—Wave speed drops at transition
to slapping mode

— Pressure ratio increases with
inlet temperature
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Operation mode changes at higher inlet temperature
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Toward predicting upstream propagating disturbances (plenum)

e Pressure rise observed in plenum of axial air inlet RDC

— Occurs despite believed local choking of inlet

e Disturbance rotates at same speed as detonation
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Quasi-1D model

e Shock strength changes with area in shock
tube problem

— Chisnell and Whitham’s formulation
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e Parametrize along “streamline” S

e Incoming oxidizer flow impacts perceived
velocity of wave

— Need distribution along S

e Assume pressure downstream of wave is
constant
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Results from model and comparison with data

e Different fluid particles would experience shocks of differing strength

e Model predicts higher Mach number than the one from observed
pressure ratio
— May be the result of constant downstream pressure

e \We are now refining the model to overcome present limitation
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Next steps in the experimental studies

e Continue to relate operational details to performance (e.g., thrust/gain)
— Global operational conditions (e.g., mass fluxes, ...)
— Geometric effects
— Component responses (e.g., time scales), with focus on inlet and plenum/combustor
coupling
e Continue development of gain/loss model to identify contribution of
losses
— Experimental characterization
— Reduced order models
— This will inform our next designs

e Transient investigations
— Ignition transient and establishment of steady state

— Transient operation (load changes)
— Response to perturbations (resilience of operation)
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Our contribution for the year

e Continued the investigation of H2/C0O2 and H2/CH4 mixtures
— We have built from last year’s work
— Focus on secondary wave suppression, and modification of secondary combustion

Investigated inlet temperature effects on H2/air operation
— Identified changes in stability properties

— Mode of operation changes as inlet temperature increases
e From stable single wave to slapping wave

— We need to refine some of the analysis tools for slapping wave modes
e Continued the investigation of pressure gain and losses in RDCs
— Some improvements on thrust measurements made, more in preparation
e Characterized and investigate new axial air inlet RDC configuration at different
inlet area ratios
— Investigation of inlet characteristics
— Dependence of operation on inlet characteristics

Investigated the response properties of the air inlet

— Developed a one-dimensional model to describe the propagation of disturbances into the

air plenum
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e Programmatic overview

e Experimental activities
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Towards Computational Design of
RDESs

Contributors
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M Objectives

UNIVERSITY OF
MICHIGAN

® Develop multi-fidelity computational models
= Fast execution of full scale simulations
= Reduced-fidelity models
= Multi-fidelity design tool

® Year 1

= Development of highly efficient CFD solver

— Use machine learning for acceleration
® Year 2
= Develop reduced-fidelity model
® Year 3

= Multi-fidelity design



M Key Modeling Challenges /4"3@_

UNIVERSITY OF
MICHIGAN

¢ Expansion region

= Subsonic/supersonic flow

Oblique shog

= Thrust estimation depends on mesh resolution

——

- =

/e = Need to handle reflections from downstream components
Unreacted gases

® Turbulent mixing, multiscale interactions

= Mesh/time-step estimations based on turbulence
theory

= O(10 pm)/1 — 10 ns

® Upstream plenum

= Runtime pressurization

= Acoustic speed pressure wave propagation



M Al For Improving Detonation-Driven Gas Turbine Technology

UNIVERSITY OF
MICHIGAN
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UM-GE-NETL

Collaboration

Machine Learning Applied to Combustion Modeling

(1000X Speed up Potential)
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e First Full Scale Simulation of RDEs with Axial Injection
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M UMdetFOAM-GPU solver

UNIVERSITY OF
MICHIGAN

Solve N-S + Energy + Species equations via high-fidelity approach
No turbulence models




UNIVERSITY OF
MICHIGAN

M Solver overview /4"3@_
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UMdetFOAM Performance
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® Near theoretical limit for computational
efficiency

® QOrder of magnitude reduction in solver time to
solution




UNIVERSITY OF
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M Improved GPU Time Integration /4"3@_

Mass fraction output

Transfer to final output
(Global index space)
CPUdenved Speedup (Log Scale)
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mechanism
complexity

Py |+ |

———

Subcycle on
CPU or GPU,
depending on

Nold

cells

'.-/ CPU faster here

Reduced mass fraction

N

species

New < Nold

cells cells

: {
L), 0
Number of Cells, \"

Re-arrange into
contiguous block

-

N

species

® GPUs operate best on large arrays
Reaction source term computed on the GPU for all active cells.

¢ If number of active cells drops
below 10-100 computation is
performed on the CPU

Cells are periodically checked to determine if they require further time
integration, and marked as inactive if complete.

Results in a 4x reduction in chemistry cost for large hydrocarbon fuels




M 3D Unwrapped NOx Formation Plots (PPM) /4"3@_

UNIVERSITY OF
MICHIGAN

AFRL Radial Air Inlet Geometry @ 1.92 ms: UM Axial Air Inlet Geometry @ 2.5 ms:
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M 3D Unwrapped NOx Formation Plots (PPM) /4"3@_

UNIVERSITY OF
MICHIGAN

AFRL Radial Air Inlet Geometry @ 1.92 ms:

UM Axial Air Inlet Geometry @ 2.5 ms:
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M 3D Detonation Chamber Cross Section Plots (UM Geometry @ 2.5 ms) APC\_

UNIVERSITY OF

MICHIGAN Coordinates in Direct Reference to Previous Unwrapped Map
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M 3D Detonation Chamber Cross Section Plots (AFRL Geometry @ 1.92 ms)

MICHIGAN Coordinates in Direct Reference to Previous Unwrapped Map
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M Notes on 3D Results AL

MICHIGAN

e AFRL RAI produces significantly more NOx than UM AAI

= Stronger, single wave mode of operation in AFRL case (and thus higher temperature at this wave) provides good
explanation for this behavior

e AFRL RAI also shows a more well-defined trail of NOx production behind the detonation wave in the axial
direction

= NOX production 1s concentrated lower in the detonation chamber right behind the wave and eventually move
higher away from the wave as the gases are pushed out the chamber.

e UM AAI shows a similar pattern to AFRL RAI in the form of NOx intensity levels in relation to azimuthal
distance to detonation wave

= [arger amounts of NOx are produced right behind the wave, with smaller amounts produced further away from the
wave (as expected)

® Cross section images of both AFRL RAI and UM AALI also highlight Thermal NOx as the main mode of NOx
production in these simulations

= Highest intensity NOX levels correspond to highest temperature regions within detonation chamber
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M Reduced-order performance model /4"3@_

® Developed from Euler equations
= Extract parameters (fill height z,, shock angle, wave speed etc.) directly tfrom CFD
= Incorporates injector blockage

® Model can be calibrated from full-scale simulations and experiments

Iterative Solver
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M Multi-fidelity framework

UNIVERSITY OF
MICHIGAN

® Integrate models of
multiple levels of
fidelity
(performance tools,
experiments,
simulations) to
create performance
map

= Model calibration is
difficult and not
universal

= Use nominal model
parameters and
account for model
error

Parameter Fitting

Reduced-order Model
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Parameters
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Simulations

|

Operating Conditions

Regression Fits

Calibrated Model

Bayesian Calibration

Reduced-order Model
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APCL

Simulations

Model with Probabilistic
Parameters

Bayesian
Inference

Reduced-order

Model

»| Co-kriging Model

—] Performance Map

Multi-fidelity Modeling
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MICHIGAN

® (Co-kriging provides a way to create better fits of high fidelity data by incorporating
low fidelity information

= Given low-fidelity data, can produce a fit trained on this data f,_(x)
= Can produce additional fit trained only on high fidelity data o,(x)
= High-fidelity data 1s generally sparse compared to low-fidelity data

e Co-kriging: Want to find fit at fidelity level 7 using fidelity level 7 — 1 information
such that f,(x) = pf,_{(x) 4+ 0,(x) where p is a constant

e (Calibrate correlation between different levels of fidelity to estimate performance with
associated uncertainty



M Performance estimation
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e Low fidelity: performance model

e High fidelity: experimental data and numerical simulations

1D Co-Kkriging 2D Co-kriging
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Additional data points at
high-fidelity level:
® Low Fidelity Training Data narrower MF ﬁt

® High Fidelity Training Data
—— Low Fidelity Prediction Mean
- High Fidelity Prediction Mean
—  Multifidelity Prediction Mean
Low Fidelity 95% C.I.
I High Fidelity 95% C.I.
B Multifidelity 95% C.I.

0.6 0.8
X

® Low Fidelity Training Data
® High Fidelity Training Data
- Low Fidelity Prediction Mean
- High Fidelity Prediction Mean
— Multifidelity Prediction Mean
' Low Fidelity 95% C.I.
I High Fidelity 95% C.I.
I Multifidelity 95% C.I.
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M Next Steps

MICHIGAN

® (Collect statistics for NOx simulations

® Validation lower-order model

= Macroscopic measurements (thrust, plenum pressure)

= Detailed measurements (wave speed, pressure jump across wave)
® Demonstrate design loop

= Use performance model to relate geometry variations to quantities of
interest

= Optimize for geometry

= Use high-fidelity sitmulations to demonstrate increase in performance



