Pressure Gain Combustion Technology Development for Gas Turbine Engines

Solutions for Today | Options for Tomorrow

NATIONAL

ENERGY TECHNOLOGY LABORATORY

2

DOE's Advanced Turbines Program

Technology Manager: Rich Dennis

Objective – Developing revolutionary, near-zero emission advanced turbine technologies through research, development in the areas of combustion, aerodynamics / heat transfer and materials.

Key Technology Areas

- Advanced Combustion Turbines Component development for turbine systems fueled with coal-derived fuels (including hydrogen and syngas) and natural gas in combined cycle applications.
- Supercritical CO2 Turbomachinery Turbine technology for sCO₂-based power cycles.
- **Steam Turbines** Improving plant performance and load-following capabilities.
- Modular Hybrid Heat Engines Novel modular hybrid heat engines, based on gas turbine technology, that are cleaner, more efficient, and better load-following capabilities.
- **Pressure Gain Combustion** Utilizing combustion control strategies to extract • additional work availability from coal-derived fuels (hydrogen and syngas) in turbine-based power cycles.

SUPERCRITICAL CO TURBOMACHINERY

ADVANCED

STEAM TURBINES

MODULAR HYBRID HEAT ENGINES

PRESSURE GAIN COMBUSTIO

Rotating Detonation Engines

Application and Advantages

Advantages

- Fuel and air has a bulk axial flow with detonation wave traveling circumferentially, producing a nearly "*constant wave*"
- No moving parts
- Detonation wave, once initiated, is self-sustained.
- Detonation wave not susceptible to flashback and thermoacoustic instabilities
- Short residence time and ability to run lean may decrease NOx emissions

Research Needs

- Low loss fuel/air injection that limits combustor plenum interaction and provides good mixing
- Accurate method for determining pressure gain
- Influence of wave number and speed on performance
- RDE-Turbine integration
- Computational models capable of address component coupling.
- Developing low-cost diagnostics

1. Wolanski, P., Proc. Comb. Institute, 2013

3

2. Nordeen et al, 49th AIAA Aerospace Sciences Meeting, Orlando, FL:, 2011.

Hybrid RDE-Gas Turbine Cycle

Comparison of NGCC Plant Efficiency with Various Gas Turbines

RDE (68.3%)

J Class (62.6%)

(Baseline)

3100

G

Class

2800

Class

Courtesy: Aerojet Rocketdyne, Inc.

Baseline: MHI's J Class Turbine with 62.6% LHV efficiency (Case 3a, DOE/NETL-341/061013, Walter Shelton, Current and Future Technologies for **Natural Gas Combined Cycle (NGCC) Power Plants)**

DOE PGC Roadmap

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Improve fundamental understanding stable continuous wave detonation
 - Wave directionality, bifurcation, translation speed (~CJ)
 - Det wave influence on operational parameters (i.e fuel injection/mixing)
- Develop scale laws to better understand the parametric impacts
 - Flow, pressure temperature, fuel composition (det cell size)
 - Gap width, combustor length, diameter (number of waves)
- Maximize pressure gain / turbine work availability and reduce emissions
 - Inlet / exhaust transition configuration (including valves for PDE's)
 - Deflagration, shear layer and downstream shocks
 - CO, NOx emissions
- Improve modeling capabilities

S. DEPARTMENT OF

- Simultaneous detonation and deflagration
- Grid dependences, chemical kinectics
- Reduced order thermo and chemical models

NETL Characterization of Injector Response using Acetone PLIF

NETL Water-Cooled RDE with variable injection configurations and exhaust treatment.

RDE coupled to T63 Turbine at AFRL Naples et al., AIAA 2017-1747

EY21 Field Work Proposal

Task 2 – Pressure Gain Combustion - Subtasks

1. Testing in the NETL Water-Cooled RDE

- The impact of long-duration versus short-duration testing on experimental studies of RDEs.
- Complete installation of axial air injection scheme and exhaust diffuser in the NETL water-cooled RDE in NETL-Morgantown B6.
- Experimental study of optimization of coupled inlet, combustor channel, and diffuser geometry in the high-pressure RDE test rig.
- Optimization of exit flow diffuser for improved performance and subsonic turbine integration.

2. Advanced Diagnostics and Machine Learning

- Incorporation of computer vision system with conventional instrumentation to develop real-time diagnostics.
- Accurate quantification of heat flux in the high-pressure, water-cooled RDE.
- Develop empirical model of dynamic data from RDE using deep learning architecture.

3. New Modular and Optical RDE

- Complete installation of an atmospheric optical RDC at NETL-Morgantown.
- 4. High Temperature and Pressure Gas Cell for TDLAS Characterization
 - Preliminary design of the high temperature-pressure gas cell in NETL-Pittsburgh for TDLAS development
- 5. Computational Modeling of Pressure Gain Combustion
 - Characterization of several advanced inlet designs using a combination of experimental studies and computational modeling.
 - Literature review and white paper on use of RDCs for direct power extraction (DPE) cycles.

NETL In-House Research Activities

- RDE Sector / Inlet Test Rig
 - Rapid evaluation of inlet concepts with correlation to lab-scale combustor. 300 slpm air, no He flow
- Computational Studies
 - 1-D injector models coupled to chemical reactor network.
 - CFD

S. DEPARTMENT OF

- Fundamental aspects of detonation
- Inlet / geometry physics
- Turbine integration
- Lab-Scale Experiment
 - Water-cooled RDE for extended operation
 - Modular RDE with full optical access to the air plenum, combustion channel and exhaust.

Reflecte shocks

Optical RDE with thrust measurement

NETL Water-Cooled, Pressurized RDC

NETL Lab-Scale RDE Injector Study

RDE Injector Experimental Set-up

- High pressure region behind detonation wave exceeds inlet supply pressure, interrupting reactant flows or even causing backflow within inlet plenums/injectors
- Inlet flows must recover fast enough to supply fresh reactants to the combustor before subsequent detonation wave arrives (and at correct/consistent stoichiometry, mixedness)
- RDE Injector Experimental Set-up
 - RDE "slice" extruded 7.5cm @ 1:1 scale (full RDE with 47cm circumference)
 - Structure created to hold modular, interchangeable geometries
 - Moderate temperatures enables use of 3D printed plastic parts
 - Semi-cold flow approach:
 - Discrete pressure pulses introduced to linear channel ("combustion annulus") via separate H_2/air pre-detonator tube
 - Inert gases within inlet paths (He/air)

NETL Lab-Scale Inlet Rig Diagnostics

MLEF – Summer Research Project

- RDE inlet sector rig was used to study four inlet concepts to evaluate flow recovery (interruption / recovery time) and pressure drop
 - AFRL radial air inlet gap width of 0.22in (reference)
 - AFRL radial air inlet gap width of 0.44 in
 - AFRL radial air inlet gap width of 0.66 in
 - The fourth design is currently unpublished and will not be disclosed in this paper, but its results and analysis will be shown. (Aerostrut Pgain Inlet)

NETL water-cooled RDC without instrumentation package.

Design Basics and Operational Envelope

• Modular Geometry

- 152.4 mm diameter, 7.62 mm combustion annulus, 152.4 mm length
- Axial and Radial air injection
- Accommodate changes to fuel/air routing, injector, centerbody, outerbody, exhaust, instrumentation ports

• Operating Conditions

- Cooling: water @ 150 lpm, 11 Bar
- Max. shell T. P \approx 477K, 16 Bar
- air flow rate (a) 600 K 1 kg/sec

• Test Conditions (H2/Air – H2/NG/Air)

- Tair = 340-475 K, Pcomb = 0-1.5 Bar, mdot = 0.3 - 0.65 kg/sec.
- Instrumentation (1 MHz sampling)
 - Dynamic Pressure, OH Chemi, Combustion Ionization
 - High Speed Imaging (60 kHz)

Radial Air Injection

Air Injector
Gap Size (mm)
0.56
0.79
1.75
2.8

11

Instrumentation and Geometry

NATIONAL

ERGY TECHNOLOGY ABORATORY

Additional Instrumentation and Optical Access

Gaseous Emissions Sampling

- NOx
- 02

Sampling is conducted in realtime during long duration (20-30 sec) tests.

- High speed images (typically ~ 60kfps, capability-1Mfps)
- Computer vision / machine learning

U.S. DEPARTMENT OF

NATIONAL

ENERGY TECHNOLOGY

NETL Lab Scale RDC – H2/Air

phi=0.74, Total mass flow ~ 0.555kg/sec P = 2.3 Bar, Tair = 354 K

Distribution A: Approved for public release; distribution is unlimited

Time [sec]

NOx Emission (ppm) – NETL RDE on H2-Air

NOx Emissions (ppm) – Corrected to 15% O2

Oxygen referenced conc. = Measured conc.x $\frac{20.9 - Oxygen \, Reference \, value \, (\%)}{20.9 - measured \, oxygen \, (\%)}$

Results shown are from NETL uncooled RDE

Ferguson, Donald H., Bridget O'Meara, Arnab Roy, and Kristyn Johnson. "Experimental Measurements of NOx Emissions in a Rotating Detonation Engine.", AIAA2020-0204, AIAA Scitech 2020 Forum, Orlando, FL, January 2020, https://doi.org/10.2514/6.2020-0204.

<u>Real-time sensor for RDE Mode and Wave Speed</u>

Machine Vision – Deep Learning Application

- Train convolutional neural network (CNN) on large pool of images with multiple modes
- Utilize CNN to predict wave mode (wave number and direction of rotation) from a single image
- Machine vision approach is being combined with conventional instrumentation (p') to add instantaneous wave speed.

NETL images 1CW 1CCW 80 2CW Classification 2CCW 60 3CW 91 0 3CCW 40 True 1CR 99 2CR 0 FIGURE 6: Downstream images of modes (A) 1CW, (B) 1CCW, (C) 2CW, (D) 2CCW, (E) 3CW and (F) 3CCW 20 3CR Def Predicted Classification

FIGURE 16: Normalized confusion matrix of extended dataset containing counter-rotating waves and deflagrative behaviors

Purdue images

Johnson, Kristyn B, Donald H Ferguson, Robert S Tempke, and Andrew C Nix. "Application of a Convolutional Neural Network for Wave Mode Identification in a Rotating Detonation Combustor Using High-Speed Imaging.", GT2020-15676 In ASME 2020 Turbo Expo. Virtual, Online: ASME Turbo Expo, 2020.

FIGURE 15: Downstream images of additional modes (A) 1CR, (B)

CR (C) 3CR and (D) Def

NETL Optical and Modular RDE (mRDE)

- **NE**NATIONAL ENERGY TECHNOLOG LABORATORY

Combustor-Plenum interactions and Combustion Stability

Optical Access

• Air plenum, combustor and exhaust

• Thrust measurement with ducted exhaust

- Provides performance metric through Equivalent Available Pressure (EAP)
- Working to develop performance metric for turbomachinery

Testing conditions

- Hydrogen-Air (sonic nozzle flow measurement)
- Short duration (~ 3 sec)
- $m_{air} = 0.061 \text{ kg/sec}$
- Full diagnostic compliment
 - OH Chemi, TDLAS, high speed PLIF/PIV, P, T and chemi ionization (ion probe)

Impact of Unsteadiness on Turbine Efficiency

RDE-Turbine Integration

- Turbine / Engine Integration
 - AFRL test of T63 gas turbine stock combustor replaced with RDE

ROWER OUTPUT UM OUTPUT UM

T63 Gas Turbine reverse flow design with aft-engine combustor replaced with RDE.

Naples et al., "Rotating Detonation Engine Implementation into an Open-Loop T63 Gas Turbine Engine", AIAA SciTech 2017

Dynamic pressure measurement upstream and downstream of high pressure turbine for RDC test.

Analysis of Turbine Exposed to Inlet Fluctuations

- **NE**NATIONAL ENERGY TECHNOLOGY LABORATORY

RDE-Turbine Integration (Purdue University)

Turbine Integration – High efficiency Diffuser

RDE-Turbine Integration (Purdue University)

Instrumentation and Geometry

NATIONAL

ERGY TECHNOLOGY ABORATORY

Summary

- Rotating Detonation Combustion / Engines has the potential for producing significant gains in cycle efficiency through near constant volume combustion.
 - Research has focused on Hydrogen-Air combustion
- Challenges exist
 - Reducing the pressure drop across the inlet, maintaining combustion stability, understanding performance characteristics, compressor / turbine integration
- DOE continues to provide support for PGC and collaborates with other funding agencies when appropriate.
- Consideration for Pressure Gain Combustion in new hybrid cycles.

Thank You.

Questions??

Don Ferguson, PhD donald.ferguson@netl.doe.gov (304) 285-4192

