

Zero-Emissions Supercritical Carbon Dioxide Syngas Oxy-Combustor Development & Testing Program

US D.O.E. Award DE-FE0031922

Principal Investigator: David M. Cusano, Ph.D.

University Turbine Systems Research and

Advanced Turbines Program Review

November 9, 2021

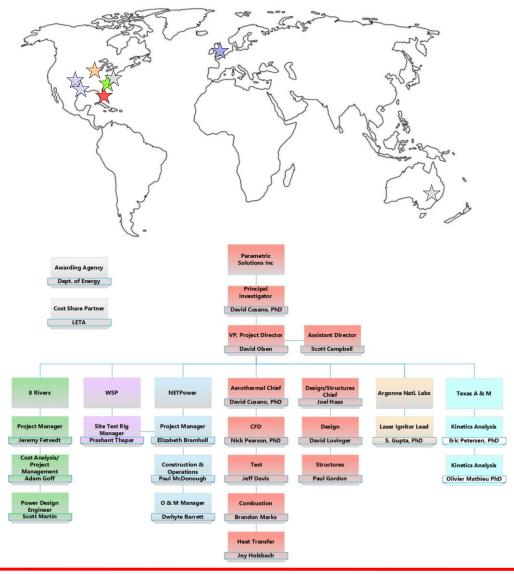
The objective of the project is to develop a syngas-fueled combustor for high-pressure, high-temperature, oxy-fuel, sCO_2 power cycles, with particular focus to the Allam-Fetvedt (AF) Cycle, in order to lower the cost of power with near-100% carbon capture.

- Raise the TRL level of AF Cycle combustors operating on Syngas from 3 to 6.
- Design a combustor for AF Cycle applications, operating on Syngas fuel, such that the technology can be readily applied to a combustor operated at a 200-300 MWe AF plant.
 - Syngas can be from gasified coal or gasified biomass for negative emissions
 - Combustor can also use natural gas or methane as fuel
- Manufacture the combustor and associated hardware to allow it to be installed and tested at the existing NET Power facility in La Porte, Texas.
- Modify the existing NET Power facility in La Porte, Texas to allow for installation and operation of the combustor running on Syngas (necessarily will include natural gas operation).
- Test the combustor to validate TRL 6 and readiness for commercialization.

PARAMETRIC SOLUTIONS INC.

New Syngas Combustor and Test Rig Operated at A-F Cycle Demo Plant

- Development Combustor based on previous successful 300 bar sCO2 combustor testing
 - 20 MWth development combustor operated at full pressure.
 - Designed for three syngas compositions and natural gas.
- Production-like combustor, leveraging learning from development combustor testing.
- Modify existing demonstration plant for A-F Cycle
 - Replace sCO2 turbine with a multistage orifice and quill shaft
 - Syngas capability addressed through CO and H2 tube trailers, mixed to create syngas compositions.
 - Combustor operated at 12-20 MWth (limitation due to turbine removal)
 - CO2 capture and recycle provides commercial-like testing
- Successful testing of production-like combustor will allow for commercialization at the 200-300 MWe size



Team Overview

Uniquely Qualified and Global Team Focused on DOE Project

- Parametric Solutions, Inc. (US) Project Prime
 - 30 years of propulsion engineering, manufacturing and development
 - First company to test sCO2 at 300 bar 2012
- 8 Rivers, LLC (US) Subrecipient
 - Patented sCO2 cycle Allam-Fetvedt cycle
- NET Power, LLC (US) Subrecipient
 - Owns/operates a sCO2 power plant in Texas capable of 20MWt output
- WSP (UK) Subrecipient
 - Plant construction engineering
- Texas A&M (TEES) (US) Subrecipient
 - sCO2 Combustion kinetics
- Argon National Laboratory (ANL) (US) Direct to DOE
 - Laser ignitor development
- Low Emissions Technology Australia (AUS) Funding Partner & Cost Share Provider
 - Invests in technologies that reduce and remove carbon emissions from energy / heavy industry

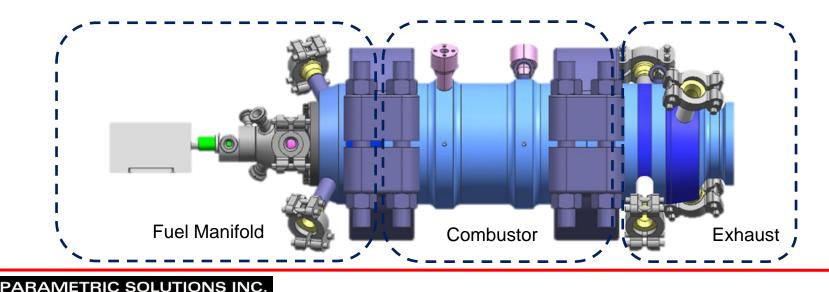
PARAMETRIC SOLUTIONS INC. PRODUCT DEVELOPMENT SERVICES

Schedule Status

Project on Schedule with Low Risk of Issues

\checkmark	ATP	10/1/2020
\checkmark	Project Management Plan	10/29/2020
\checkmark	Project Kickoff Meeting	11/3/2020
\checkmark	Combustor Concept Design Review (CDR)	2/11/2021
\checkmark	Technical Interchange Meeting #1 - Facility CDR	2/24/2021
\checkmark	Technical Interchange Meeting #2 - Risk Review	4/14/2021
\checkmark	Combustor & Test Facility Preliminary Design Reviews (PDR)	5/13/2021
0	Combustor & Test Facility Detailed Design Reviews (DDR)	5/15/2022
0	Test Facility Commissioning Complete	12/15/2022
0	Development Combustor Hardware Available	3/1/2023
0	Development Combustor Testing	3/15 - 4/15/2023
0	Production-Like Combustor Design Complete	6/30/2023
0	Testing of Production-Like Combustor	8/15 - 9/15/2023
0	Analysis of Test Data Complete	11/15/2023
\bigcirc	Final Program Report	12/15/2023

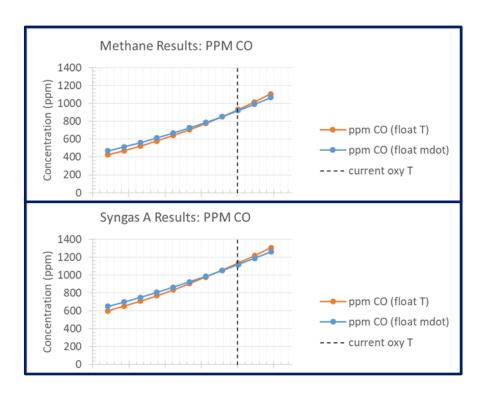
NATIONAL


TECHNOLOGY

PARAMETRIC SOLUTIONS INC. PRODUCT DEVELOPMENT SERVICES

Combustor Design Leveraged from Previous Successful sCO2 Demonstration

- Syngas sCO2 Combustor Challenges Design & Integration Capabilities
 - Proven natural gas sCO2 combustor architecture used for Syngas system design
 - Common fuel manifold and nozzle for all fuels
 - Common combustor liner for all tests conditions and fuel types
 - Robust instrumentation suite for operational fine-tuning and to support future commercialization
- Modular Design Provides Ease of Assembly, Installation and Access
- Interface Coordination Ongoing with All Project Team Organizations
 - Combustor to test site physical, functional, instrumentation and installation interfaces baselined.
 - Test site modifications syngas compressor, MSO, CO & H2 trailers



Kinetics Analysis

Kinetics Models Used to Evaluate all Conditions and Fuel Types

- Kinetics analyses have yielded improvements in emissions throughout the Preliminary Design Phase
- Mixing and volume trade studies performed to determine the influence of different injector, dilution, and cooling configurations on emissions profile.
- Matching kinetics models and combustion CFD validation in process
- Syngas provides the most challenging combustion performance
 - Heat capacity
 - Emissions

٠

٠

Combustor Rig Analysis

Evaluating All Fuel Types, Rig Configurations and Operating Ranges

- Combustion and CFD Analysis
 - Mixing and dilution analysis are prime path to success
 - Part power conditions are limiting operating points
- Thermal and Structural Analysis
 - Thermal environment unique for combustors with reduced transient time/temp
 - Component temperatures to meet full life components using high temperature metals
 - Operating pressures and temperatures drive casing configuration and materials

Syngas Testing Overview

- Leveraging experienced team which has previously completed similar test for NG fired combustor.
- Unique facility allows for:
 - Multiple types of syngas, mixed on demand
 - Learnings applicable to gasified coal, gasified biomass, and natural gas to support zero-to negative-carbon power from a variety of fuel sources to accelerate global decarbonization
 - Operation in representative environment and conditions
 - Commercially relevant size

SERVICES

Existing Test Facility Being Readied for Testing in 2022

- NET Power is a clean energy technology company that develops and licenses a proprietary process that generates electricity from natural gas with zero emissions
- This process called the Allam-Fetvedt Cycle uses a semi-closed loop, CO2-powered cycle to create cheap electricity while capturing all emissions and producing no air pollutants
- NET Power's test facility in La Porte, Texas achieved first fire in 2018, validating the core technology and becoming the world's first large-scale supercritical carbon dioxide power plant
- NET Power partners with developers and other stakeholders to develop power plants that help the world reach its climate goals. Recently, 8 Rivers announced the development of two commercial-scale Allam-Fetvedt Cycle plants, one in Illinois and one in Colorado

Following successful design, fabrication and test of development and production-like combustors, a final report will be submitted summarizing the following:

- Development project summary
 - Development and production-like combustor designs
 - Test facility modifications
 - Combustor test results
 - Overall combustor and plant operation findings
- Techno-economic analysis of proposed 200-300 MWe AF-Cycle coal power system
 - Commercial-scale AF-Cycle plant description
 - Capital cost estimates
 - Maintenance requirements
 - Consumables cost estimates
 - Detailed sizing for all critical equipment
 - Commercial implementation feasibility assessment

