Multiphysics Multiscale Simulation Platform for Damage, Environmental Degradation and Life Prediction of CMCs in Extreme Environments

PI: Dr. Aditi Chattopadhyay
School for Engineering of Matter, Transport and Energy
Arizona State University, Tempe, AZ

Major Participant: Dr. Luke Borkowski
Raytheon Technologies Research Center
East Hartford, CT

Annual Review Meeting
November 8-10, 2021

U.S. Department of Energy
Program Manager: Matthew F. Adams
Grant Number: DE-FOA-0001993
Overview

- Project Summary
- Motivation
- Research Objectives & Tasks
- Research Progress
 - Material Characterization & Uncertainty Quantification
 - Multiphysics Constitutive Modeling
 - Thermomechanical Testing
 - Integrated Multiscale Framework
 - Machine Learning (ML)-based Surrogate Model
- Concluding Remarks & Future Work
- Publications
- Acknowledgements
Research Objectives

Develop a synergistic multiscale framework, integrating multiphysics constitutive models with scale specific experiments, to understand temporospatial & scale dependent deformation, damage, & degradation mechanisms in CMCs operating in turbine environment.

- Accurate scale-dependent material characterization & uncertainty quantification
- Constitutive modeling of time-dependent damage, inelasticity, and effects of environmental degradation
- Efficient synergistic multiscale analysis
- Incorporation of developed models into commercial finite element (FE) software for CMC component analysis
- Reduced order model (ROM) for computational efficiency
- Closed-loop testing for model calibration & validation
Task 1: Project Management and Planning

Task 2: Material Characterization & Uncertainty Quantification
- Multiscale CMC Characterization
- Uncertainty Quantification
- Stochastic Microstructural Simulation

Task 3: Multiphysics Constitutive Modeling
- Thermomechanical Progressive Damage
- Creep-Fatigue (Dwell Fatigue)
- Fiber-Matrix Interface
- Environmental Degradation & Oxidation

Task 4: Integrated Multiscale Framework
- Synergistic Multiscale Framework
- Multiscale HFGMC

Task 5: Integration into an FEA Model

Task 6: Testing & Validation
- Thermomechanical Testing
- Analysis of Damage Mechanisms
- Thermogravimetric Testing

Develop more Accurate Life Prediction Methodologies and Integrate with FEA Software

Objective

ASU/RTRC

ASU/ARL

ASU
Material Characterization and Uncertainty Quantification

Objective: Systematic quantification of scale-dependent architectural variability & as-produced defects to i) facilitate SRVE development & ii) investigate effects of variability on effective properties & response

- Material characterization
- Uncertainty assessment
- Generation of statistical representative volume elements (SRVEs)

3D Statistical characterization and material variability quantification

Microscale features
- Matrix cracking
- Fiber failure
- Intra-tow matrix porosity

3D high-fidelity microscale model

Mesoscale features
- Tow/matrix debonding
- Crossover defects

3D mesoscale model

Composite Weave

Material/architectural stochasticity
Multiscale graphs allow quantification of architectural & defects variability at respective constituent and weave scales.
Multi Deep NN–based Framework for Multiscale Microstructural Analysis

Feature extraction & variability quantification of microstructures

- Semantic segmentation of microstructural features through Convolutional Neural Network (CNN) layers
- Microstructure variability quantification computed through regression layer

Generation of High-fidelity SRVEs

- Generator produces SRVEs from actual micrograph characteristic features & distribution
- Discriminator enables distinguishing between actual micrograph and generated SRVE for generator optimization

2- Cooper, S. J. et al. npj Computational Materials (2020)
Vanilla Regression Training

Utilized previously-developed SRVE generation algorithm to train DL-based algorithm and further improve variability quantification accuracy.

Prediction from optimized vanilla regression show high coefficient of determination (R^2) with respect to ground truth.
- Achieved semantic segmentation for matrix, fiber, fiber/matrix interface and porosity to inform high fidelity micromechanics simulations
- Captured matrix secondary phases and fiber damage regions; critical for accurate damage assessment
Vanilla Regression SiC/SiNC Features Map, Contd.

Confocal microscopy micrograph

Filter A Filter B Filter C

Pixel width

Pixel height

Matrix secondary phases

Intratow defects

Fiber damage

Fiber-Matrix interface

Intratow defects

Modular deep-learning NN: Successfully segmented different microstructure variability: fiber radii, matrix crack shape & distribution and fiber-matrix chemical composition
Microstructure Variability Quantification

- Captured microstructure variability in fiber and porosity volume fractions
- In-progress: fiber radius, intratow spacing, porosity shape and size, & intertow features

C/ SiNC
- Fiber VF = 56% ± 6%
- Porosity VF = 3.7% ± 1%

SiC/ SiNC
- Fiber VF = 57% ± 3%
- Porosity VF = 4% ± 0.6%
Multiscale Simulation of 5HS Woven C/SiC CMC

Thermomechanical progressive damage model accounting for crack nucleation & growth

- Includes flaw statistics, temperature dependent material properties
- Crack growth kinetics governed by fracture mechanics

Simulated 5HS weave architecture

Need to account for material initial damage state & residual stress effects due to cooldown during manufacturing process

Skinner, T., & Chattopadhyay, A., Composite Structures (2021)
Areas with high residual tensile stress have shrinkage cracks; high stress areas in cooldown framework accumulate damage & exhibit degraded initial properties in damage direction.
High-fidelity FE Creep Modeling

3D coupled viscoplasticity-damage model:
- Norton-Bailey creep power law
- Hill orthotropic plastic potential
- Arrhenius temperature dependence
- Associative flow rule
- Time- and strain-hardening formulations
- Fracture mechanics-informed matrix damage model
- Curtin progressive fiber damage model

Captured transient creep stage due to large constituent creep mismatch, followed by steady-state stage
Excellent agreement with CMC total longitudinal strain & constituent longitudinal stress time-history
Effects of intratow porosity on creep behavior

Prescribed loading: 100 MPa (constant), 1300 °C

Presence of intratow voids affects load transfer mechanism between constituents & results in complex stress “hot spots” in vicinity of voids - potential damage initiation sites
Matrix cracks create passages for oxygen to diffuse into material

- Oxidation of fiber interphase or fusion of SiC fiber to SiNC matrix impairs load transfer
- Oxidation reaction of oxygen-exposed SiNC matrix activates at extreme temperatures, resulting in a multi-regime response

Physics-based modeling

- Model oxidation coupling through the chemical reaction source terms for concentrations of oxygen and material
- Model damage-driven diffusion through approximations of the partial differential equations

Model under development to address complex coupling between anisotropic damage, diffusion, crack closure, & oxidation of the fiber-matrix interphase at the microscale

Oxidation of fiber interface

Oxygen diffusing through cracks

Damage-diffusion Oxidation Coupling, Contd.

Five degrees of freedom (DOFs) per node: displacement (x, y, z), concentration (O$_2$, BN)

For $c_{(O_2)}$ DOF:
$$ \dot{c}_{(O_2)} - \nabla \cdot (D \nabla c_{(O_2)}) + R c_{(BN)} c_{(O_2)} = 0 $$

For $c_{(BN)}$ DOF:
$$ \dot{c}_{(BN)} + R c_{(BN)} c_{(O_2)} = 0 $$

For displacement DOFs:
$$ \nabla \cdot \sigma = 0 $$

Oxidation reaction 1:
$$ 2BN(s) + \frac{3}{2} O_2(g) \rightarrow B_2O_3(l) + N_2(g) $$

Diffusion crack path matrix:
$$ P = \begin{bmatrix} \frac{d_{22}h_{22}+d_{33}h_{33}}{2} & 0 & 0 \\ 0 & \frac{d_{11}h_{11}+d_{33}h_{33}}{2} & 0 \\ 0 & 0 & \frac{d_{22}h_{22}+d_{11}h_{11}}{2} \end{bmatrix} $$

For SiC:
$$ \sigma = MC \varepsilon $$

For Interphase:
$$ \sigma = \left(1 - \frac{c_{(BN)}}{c_{(max)}}\right) C \varepsilon $$

Stress:

Effective oxygen diffusivity:
$$ D = P \cdot D_{air(O_2)} $$

$$ D = \left(1 - \frac{c_{(BN)}}{c_{(max)}}\right) D_{air(O_2)} I $$
In-situ Tensile Testing

Experimental set-up

1. DIC speckle pattern
2. Amteco Furnace (>1400 °C)
3. 30kN MTS load frame
4. Hydraulic grip system
5. Digital image correlation

- Two independent heating zones for better temperature uniformity control
- View port access for in-situ (DIC) experiments

High & room temperature quasi-static (QS) & creep testing for SiC/SiNC using MTS load frame and in-situ digital image correlation (DIC) technique
SiC/SiNC CMC stress-strain response and strength

- Loading conditions: QS strain rate = 1e-5/sec
- Temperature conditions: Room temperature = 24 °C
- Gauge region dimensions: 99.0 x 10.2 x 2.5 (mm)

Average tensile strength = 409.34 MPa (0/90°) & 193.24 MPa (+/-45°)

Average failure strain = 0.4731% (0/90°) & 0.52 % (+/-45°)

Results show good agreement with data from literature

Integrated Multiscale Framework

Challenge & Goal:

Raytheon’s role includes evaluating multiscale models for industrial applications (i.e., relevant materials, geometries, loads)

Outcomes:

▪ Assessment of accuracy and efficiency of lifing model for material systems, geometries, and loads relevant to RTX
▪ Technology readiness level (TRL) evaluation of modeling framework
▪ Validate simulation results against in-house lifing tools
Machine Learning Surrogate Model

Approach:

Surrogate models will help bridge gap between high-fidelity multiscale models and industrial application

- Efficiently approximate output of physics-based models
- Neural-network based surrogate model – trained on experimental and simulation data
- Physics-based regularization to enforce physical laws

\[l_T = \lambda_{MSE} l_{MSE} + \lambda_P l_P \]
\[l_{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - y_i^p)^2 \]
\[l_P = \text{ReLU}(w^P) \]

Surrogate model will run much faster than numerical solution - making large-scale multiscale simulations more feasible

This page contains no technical data subject to the EAR or the ITAR.
Results:

As proof-of-concept, surrogate model trained and evaluated using nonlinear plasticity numerical model

Validation results – Piecewise linear reverse loading

Validation results – Cyclic random amplitude, random frequency loading

Excellent agreement between ML surrogate and training data

Borkowski, Sorini and Chattopadhyay (2021)

This page contains no technical data subject to the EAR or the ITAR.
Surrogate model developed, trained, and tested for woven CMC under cyclic loading conditions

- RNN-based surrogate model prediction includes homogenized constitutive response of multiple constituents (fiber, matrix, interphase)

- Physics-based regularization to enforce physical laws (e.g., tangent stiffness matrix positive semi-definiteness) and maintain linear elastic unloading

- Nonlinear tensile cyclic loading response of plain weave CMC governed by progressive matrix damage model

Mathematical expressions:

\[l_T = \lambda_{MSE} l_{MSE} + \lambda_{TM} l_{TM} + \lambda_{PSD} l_{PSD} \]

\[l_{MSE} = \frac{1}{n} \sum_{i=1}^{n} (\sigma_i - \sigma_i^p)^2 \]

\[l_{TM} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial \sigma_i}{\partial \varepsilon_i} - \frac{\partial \sigma_i^p}{\partial \varepsilon_i} \right)^2 \]

\[l_{PSD} = \text{ReLU} \left(- \frac{\partial \sigma_i^p}{\partial \varepsilon_i} \right) \]
Surrogate model shown to perform well in predicting CMC cyclic behavior, including unloading

- Training data generated using Multiscale Generalized Method of Cells (MSGMC) micromechanics model

- Uniaxial load / unload cycles applied (up to four) at random points during loading and of varying unload magnitudes

Sample loading histories

Surrogate model validation

Test case 45

Test case 3
Concluding Remarks

- Developed concurrent & efficient high-fidelity multiscale simulation methodology
- Characterized scale-dependent architectural variability & defects in C/SiNC and SiC/SiNC CMCs material systems using SEM, EDS, X-ray Micro-CT, and confocal microscopy
- Developed microstructure generation algorithm accounting for material variability and defects, captured from detailed characterization study
- Developed ML-based techniques to facilitate image segmentation, scale-dependent variability quantification, and SRVE generation
- Developed multiscale cooldown framework and temperature-dependent damage model - i) simulates manufacturing-induced damage & thermal residual stresses; ii) captures nonlinear thermomechanical response
- Developed 3D orthotropic viscoplastic creep constitutive model & implementation in i) GMC micromechanics framework; ii) ABAQUS commercial FEA via UMAT
- Formulated oxidation model with complex coupling between anisotropic damage, diffusion, crack closure, & hygrothermal effects
- Developed NN-based surrogate model to facilitate computationally efficient information transfer across multiple analysis length scales
- Conducted *in-situ* quasi-static tensile testing using digital image correlation
Future Work

- Development of conditional generative adversarial network for experimentally-inspired SRVEs
- Hybrid μCT-microscopy segmentation approach for mesoscale 8HS SiC/SiNC CMC SRVE
- High-fidelity SRVE simulations including damage and creep
- Integration of oxidative-damage model into multiscale framework
- Extension of ML-surrogate model to account for viscoplasticity and damage anisotropy
- Dwell-fatigue testing & modeling
Publications

Journals

Conferences

Acknowledgements

Program Manager: Matthew F. Adams

- Dr. Patcharin Burke – National Energy Technology Laboratory
- Dr. Edgar Lara-Curzio – Oak Ridge National Laboratory
- Dr. Anindya Ghoshal – Army Research Lab (ARL)
- Dr. Ojard, Dr. Kumar & Dr. G.V. Srinivasan – RTRC
- Dr. Amjad Almansour & Dr. Robert Goldberg – NASA Glenn Research Center
- Dr. Luis Bravo – ARL, DoD HPC hours, Uncertainty-based compressible multiphase flow and material models for rotorcraft FVL propulsion

Research Team

- Dr. Luke Borkowski (RTRC) – Major Participant
- Christopher Sorini – PhD Student
- Khaled Khafagy – PhD Student
- Mohamed Hamza – PhD Student
- Jacob Schichtel – NDSEG Fellow