

Multiphysics Multiscale Simulation Platform for Damage, Environmental Degradation and Life Prediction of CMCs in Extreme Environments

PI: Dr. Aditi Chattopadhyay School for Engineering of Matter, Transport and Energy Arizona State University, Tempe, AZ

> Major Participant: Dr. Luke Borkowski Raytheon Technologies Research Center East Hartford, CT

> > Annual Review Meeting November 8-10, 2021

U.S. Department of Energy Program Manager: Matthew F. Adams Grant Number: DE-FOA-0001993

- Project Summary
- Motivation
- Research Objectives & Tasks
- Research Progress
 - Material Characterization & Uncertainty Quantification
 - Multiphysics Constitutive Modeling
 - Thermomechanical Testing
 - Integrated Multiscale Framework
 - Machine Learning (ML)-based Surrogate Model
- Concluding Remarks & Future Work
- Publications
- Acknowledgements

Research Objectives

Develop a synergistic multiscale framework, integrating multiphysics constitutive models with scale specific experiments, to understand temporospatial & scale dependent deformation, damage, & degradation mechanisms in CMCs operating in turbine environment

- Accurate scale-dependent material characterization & uncertainty quantification
- **Constitutive modeling of time-dependent** damage, inelasticity, and effects of environmental degradation
- Efficient synergistic multiscale analysis
- Incorporation of developed models into commercial finite element (FE) software for **CMC** component analysis
- Reduced order model (ROM) for computationall efficiency
- Closed-loop testing for model calibration & validation

Real micrographs

testing

Multiphysics Multiscale Modeling Framework

Localization

Homogenization

Material Characterization and Uncertainty Quantification

<u>Objective</u>: Systematic quantification of scale-dependent architectural variability & as-produced defects to i) facilitate SRVE development & ii) investigate effects of variability on effective properties & response

- Material characterization
- Uncertainty assessment
- Generation of statistical representative volume elements (SRVEs)

Multiscale Material Characterization

Multiscale graphs allow quantification of architectural & defects variability at respective constituent and weave scales

Microstructural Analysis

Feature extraction & variability quantification of microstructures

- Semantic segmentation of microstructural features through Convolutional Neural Network (CNN) layers
- Microstructure variability quantification computed through regression layer

Vanilla Regression/GA Coupling Tensor

Generation of High-fidelity SRVEs

Figures are reconstructed from: 1- Holm, Elizabeth A., et al. Metallurgical and Materials Transactions A (2020) 2- Cooper, S. J. et al. npj Computational Materials (2020)

Utilized previously-developed SRVE generation algorithm to train DL-based algorithm and further improve variability quantification accuracy

9

Vanilla Regression C/SiNC Feature Maps

- Achieved semantic segmentation for matrix, fiber, fiber/matrix interface and porosity to inform high fidelity micromechanics simulations
- Captured matrix secondary phases and fiber damage regions; critical for accurate damage assessment

Vanilla Regression SiC/SiNC Features Map,

Modular deep-learning NN: Successfully segmented different microstructure variability: fiber radii, matrix crack shape & distribution and fiber-matrix chemical composition

Microstructure Variability Quantification

AIMS ADAPTIVE INTERLIGENT MATERIALS & SYSTEMS CENTER

- Captured microstructure variability in fiber and porosity volume fractions
- In-progress: fiber radius, intratow spacing, porosity shape and size, & intertow features

Multiscale Simulation of 5HS Woven C/SiC CMC

Thermomechanical progressive damage model accounting for crack nucleation & growth

- Includes flaw statistics, temperature dependent material properties
- Crack growth kinetics governed by fracture mechanics

Reformulated Framework with Cooldown Effects

Areas with high residual tensile stress have shrinkage cracks; high stress areas in cooldown framework accumulate damage & exhibit degraded initial properties in damage direction

SU High-fidelity FE Creep Modeling

+0.00e+00 +0.00e+00

+0.00e+00 +0.00e+00

+0.00e+00 +0.00e+00

+0.00e+00 +0.00e+00

+0.00e+00 +0.00e+00

+0.00e+00 +0.00e+00 +0.00e+00

S, Mises

(Avg: 75%)

3D coupled viscoplasticity-damage model:

- Norton-Bailey creep power law
- Hill orthotropic plastic potential
- Arrhenius temperature dependence
- Associative flow rule
- Time- and strain-hardening formulations
- Fracture mechanics-informed matrix damage model
- Curtin progressive fiber damage model

Total longitudinal strain vs. time

Constituent longitudinal stress vs. time

- Captured transient creep stage due to large constituent creep mismatch, followed by steady-state stage
- Excellent agreement with CMC total longitudinal strain & constituent longitudinal stress time-history

High-fidelity FE Creep Modeling, Contd.

Effects of intratow porosity on creep behavior

Prescribed loading: 100 MPa (constant), 1300 °C

Presence of intratow voids affects load transfer mechanism between constituents & results in complex stress "hot spots" in vicinity of voids - *potential damage initiation sites*

Damage-diffusion Oxidation Coupling

Matrix cracks create passages for oxygen to diffuse into material

- Oxidation of fiber interphase or fusion of SiC fiber to SiNC matrix impairs load transfer
- Oxidation reaction of oxygen-exposed SiNC matrix activates at extreme temperatures, resulting in a multi-regime response

Physics-based modeling

- Model oxidation coupling through the chemical reaction source terms for concentrations of oxygen and material
- Model damage-driven diffusion through approximations of the partial differential equations

Model under development to address complex coupling between anisotropic damage, diffusion, crack closure, & oxidation of the fiber-matrix interphase at the microscale

Oxidation of fiber interface

Jacobson (1999) "High-Temperature Oxidation of Boron Nitride: II, Boron Nitride Layers in Composites".

Oxygen diffusing through cracks

Terrani (2014) "Silicon carbide oxidation in steam up to 2 MPa". Journal of the American Ceramic Society.

Damage-diffusion Oxidation Coupling, Contd.

Five degrees of freedom (DOFs) per node: displacement (x, y, z), concentration (O_2 , BN)

In-situ Tensile Testing

Experimental set-up

Amteco Furnace (>1400 °C)

- Two independent heating zones for better temperature uniformity control
- View port access for in-situ (DIC) experiments

30kN MTS load frame

Hydraulic grip system

Digital image correlation

High & room temperature quasi-static (QS) & creep testing for SiC/SiNC using MTS load frame and *in-situ* digital image correlation (DIC) technique

Quasi-Static Tensile Testing, Contd.

SiC/SiNC CMC stress-strain response and strength

Average failure strain = 0.4731% (0/90°) & 0.52 % (+/-45°)

Results show good agreement with data from literature

*Artz et. al, 2020, International Journal of Solids and Structures, 202, pp.195-207.

Challenge & Goal:

Raytheon's role includes evaluating multiscale models for industrial applications (i.e., relevant materials, geometries, loads)

- Assessment of accuracy and efficiency of lifing model for material systems, geometries, and loads relevant to RTX
- Technology readiness level (TRL) evaluation of modeling framework
- Validate simulation results against in-house lifing tools

ASJ Machine Learning Surrogate Model

Approach:

Surrogate models will help bridge gap between high-fidelity multiscale models and industrial application

 h_{t-1}^2 -

 h_{t-1}^{1} -

 y_t

surrogate model

architecture

FNN

- Efficiently approximate output of physics-based models
- Neural-network based surrogate model – trained on experimental and simulation data
- Physics-based regularization to enforce physical laws

Surrogate model will run much faster than numerical solution - making large-scale multiscale simulations more feasible

Physics-based

regularization

 $l_T = \lambda_{MSF} l_{MSF} + \lambda_P l_P$

Machine Learning Surrogate Model, Contd.

Results:

As proof-of-concept, surrogate model trained and evaluated using nonlinear plasticity numerical model

Excellent agreement between ML surrogate and training data

*Borkowski, Sorini and Chattopadhyay (2021)

This page contains no technical data subject to the EAR or the ITAR.

Surrogate Model for Woven CMC Material System

Surrogate model developed, trained, and tested for woven CMC under cyclic loading conditions

- RNN-based surrogate model prediction includes homogenized constitutive response of multiple constituents (fiber, matrix, interphase)
- Physics-based regularization to enforce physical laws (e.g., tangent stiffness matrix positive semi-definiteness) and maintain linear elastic unloading
- Nonlinear tensile cyclic loading response of plain weave CMC governed by progressive matrix damage model

Physics-based regularization

$$l_{T} = \lambda_{MSE} l_{MSE} + \lambda_{TM} l_{TM} + \lambda_{PSD} l_{PSD}$$
$$l_{MSE} = \frac{1}{n} \sum_{i=1}^{n} (\sigma_{i} - \sigma_{i}^{p})^{2} \qquad l_{TM} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial \sigma_{i}}{\partial \varepsilon_{i}} - \frac{\partial \sigma_{i}}{\partial \varepsilon_{i}}^{p} \right)^{2}$$

Surrogate Model for Woven CMC Material System, Contd.

Surrogate model shown to perform well in predicting CMC cyclic behavior, including unloading

- Training data generated using Multiscale Generalized Method of Cells (MSGMC) micromechanics model
- Uniaxial load / unload cycles applied (up to four) at random points during loading and of varying unload magnitudes

Sample loading histories

Surrogate model validation

Test case 45

Test case 3

This page contains no technical data subject to the EAR or the ITAR

0.8

(MPa)

- Developed concurrent & efficient high-fidelity multiscale simulation methodology
- Characterized scale-dependent architectural variability & defects in C/SiNC and SiC/SiNC CMCs material systems using SEM, EDS, X-ray Micro-CT, and confocal microscopy
- Developed microstructure generation algorithm accounting for material variability and defects, captured from detailed characterization study
- Developed ML-based techniques to facilitate image segmentation, scaledependent variability quantification, and SRVE generation
- Developed multiscale cooldown framework and temperature-dependent damage model - i) simulates manufacturing-induced damage & thermal residual stresses; ii) captures nonlinear thermomechanical response
- Developed 3D orthotropic viscoplastic creep constitutive model & implementation in i) GMC micromechanics framework; ii) ABAQUS commercial FEA via UMAT
- Formulated oxidation model with complex coupling between anisotropic damage, diffusion, crack closure, & hygrothermal effects
- Developed NN-based surrogate model to facilitate computationally efficient information transfer across multiple analysis length scales
- Conducted *in-situ* quasi-static tensile testing using digital image correlation

- Development of conditional generative adversarial network for experimentally-inspired SRVEs
- Hybrid µCT-microscopy segmentation approach for mesoscale 8HS SiC/SiNC CMC SRVE
- High-fidelity SRVE simulations including damage and creep
- Integration of oxidative-damage model into multiscale framework
- Extension of ML-surrogate model to account for viscoplasticity and damage anisotropy
- Dwell-fatigue testing & modeling

Publications

Journals

- 1. Borkowski, L., Sorini, C., & Chattopadhyay, A., Recurrent Neural Network-Based Multiaxial Plasticity Model with Regularization for Physics-Informed Constraints. *Computers and Structures*, 2022.
- 2. Khafagy, K., Datta S. & Chattopadhyay, A., "Multiscale Characterization and Representation of Variability in Ceramic Matrix Composites", *Journal of Composite Materials*, 2021.
- 3. Khafagy, K., Sorini, C., Skinner, T. & Chattopadhyay, A., "Modeling Creep Behavior in Ceramic Matrix Composites", *Ceramics International*, 2021.
- 4. Khafagy, K., Venkatesan, K. & Chattopadhyay, A., "Microstructural damage and failure analysis of composites using finite element and high-fidelity micromechanics solvers". Composite Structures, (in preparation).
- 5. Khafagy, K., Sorini, C. & Chattopadhyay, A., "Effects of defects on ceramic matrix composite response: High-fidelity creep modeling". Composite Structures, (in preparation).

Conferences

- 1. Khafagy, K., Venkatesan, K., Balusu, K., Datta, S. & Chattopadhyay, A., "Stochastic microstructural analysis of failure mechanisms in ceramic matrix composites using a high-fidelity multiscale framework", *AIAA Science and Technology Forum and Exposition, January 11-15*, (2021), Nashville, TN, USA.
- 2. Khafagy, K. & Chattopadhyay, A., "Effects of as-received defects on ceramic matrix composites properties using high-fidelity microstructures with periodic boundary conditions", *The American Society for Ceramics. September 19-22*, (2021), Tx, USA.

Acknowledgements

Program Manager: Matthew F. Adams

- Dr. Patcharin Burke National Energy Technology Laboratory
- Dr. Edgar Lara-Curzio Oak Ridge National Laboratory
- Dr. Anindya Ghoshal Army Research Lab (ARL)
- Dr. Ojard, Dr. Kumar & Dr. G.V. Srinivasan RTRC
- Dr. Amjad Almansour & Dr. Robert Goldberg– NASA Glenn Research Center
- Dr. Luis Bravo ARL, DoD HPC hours, Uncertainty-based compressible multiphase flow and material models for rotorcraft FVL propulsion

Research Team

- Dr. Luke Borkowski (RTRC) Major Participant
- Christopher Sorini PhD Student
- Khaled Khafagy PhD Student
- Mohamed Hamza PhD Student
- Jacob Schichtel NDSEG Fellow

