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Research Objectives

▪ Accurate scale-dependent material 

characterization & uncertainty 

quantification

▪ Constitutive modeling of time-dependent 

damage, inelasticity, and effects of 

environmental degradation

▪ Efficient synergistic multiscale analysis

▪ Incorporation of developed models into 

commercial finite element (FE) software for 

CMC component analysis

▪ Reduced order model (ROM) for 

computationall efficiency

▪ Closed-loop testing for model calibration & 

validation

Develop a synergistic multiscale framework, integrating multiphysics

constitutive models with scale specific experiments, to understand

temporospatial & scale dependent deformation, damage, & degradation

mechanisms in CMCs operating in turbine environment

Real micrographs

Artificial micrographs

Tensile 

testing



Task 1: Project Management and Planning

Tasks & Technical Framework
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Objective ASU/ARL ASUASU/RTRC

Task 2: Material Characterization & 

Uncertainty Quantification

Task 3: Multiphysics Constitutive 

Modeling

Task 6: 

Testing & Validation

Develop more Accurate Life 

Prediction Methodologies 

and Integrate with FEA 

Software

Task 5: Integration into an 

FEA Model

Task 4: Integrated 

Multiscale Framework

• Multiscale CMC Characterization

• Uncertainty Quantification

• Stochastic Microstructural Simulation

• Thermomechanical Progressive Damage

• Creep-Fatigue (Dwell Fatigue)

• Fiber-Matrix Interface

• Environmental Degradation & Oxidation

• Thermomechanical Testing

• Analysis of Damage 

Mechanisms

• Thermogravimetric Testing

• Synergistic Multiscale 

Framework

• Multiscale HFGMC



Residual Stresses in woven CMCCreep Load Sharing
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Multiphysics Multiscale Modeling Framework



Material Characterization and 

Uncertainty Quantification
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3D Statistical 

characterization and 

material variability 

quantification

Microscale features

▪ Matrix cracking

▪ Fiber failure

▪ Intra-tow matrix 

porosity

Mesoscale features

▪ Tow/matrix 

debonding

▪ Crossover defectsMaterial/architectural 

stochasticity

Composite Weave

3D high-fidelity 

microscale model

3D mesoscale model

+

Objective: Systematic quantification of scale-dependent architectural 

variability & as-produced defects  to i) facilitate SRVE development & 

ii) investigate effects of variability on effective properties & response

▪ Material characterization

▪ Uncertainty assessment

▪ Generation of statistical representative volume elements (SRVEs)
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Multiscale Material Characterization

Multiscale graphs allow quantification of architectural & defects variability at

respective constituent and weave scales

Hi Nicalon/silicon nitrocarbide

m
m

u
m

Carbon/silicon nitrocarbide

a) 5X magnification

b) 10X magnification c) 20X magnification

d) 50X magnification

Carbon fiber

coating

Carbon fiber
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Multi Deep NN–based Framework for Multiscale 

Microstructural Analysis

▪ Semantic segmentation of 

microstructural features through 

Convolutional Neural Network (CNN) 

layers

▪ Microstructure variability

quantification computed through 

regression layer

Feature extraction & variability quantification of microstructures

Generation of High-fidelity SRVEs

▪ Generator produces SRVEs from

actual micrograph characteristic

features & distribution

▪ Discriminator enables distinguishing 

between actual micrograph and 

generated SRVE for generator

optimization

Figures are reconstructed from: 1- Holm, Elizabeth A., et al. Metallurgical and Materials Transactions A (2020)

2- Cooper, S. J. et al. npj Computational Materials (2020)
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Vanilla Regression Training

Computer-vision training 

microstructure

Deep-learning segmented

microstructure

Loss function

minimization

Pores

Matrix

Fiber

Prediction from optimized vanilla regression show high coefficient

of determination (𝑹𝟐) with respect to ground truth

Utilized previously-developed SRVE generation algorithm to train DL-based 

algorithm and further improve variability quantification accuracy

R2=0.98 R2=0.96



▪ Achieved semantic segmentation for matrix, fiber, fiber/matrix interface and

porosity to inform high fidelity micromechanics simulations

▪ Captured matrix secondary phases and fiber damage regions; critical for

accurate damage assessment

Vanilla Regression C/SiNC Feature Maps 

Confocal microscopy  

micrograph Matrix secondary phases
Intratow defects

Fiber 

damage

Pores

SEM micrograph

Pixel width
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Filter A Filter B Filter C

Filter A Filter B
Fiber-matrix 

interface
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Vanilla Regression SiC/SiNC Features Map,

Contd. 

Fiber damage
Fiber-Matrix 

interface

Matrix secondary

phases

Pixel width

P
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Filter A Filter B Filter C

Modular deep-learning NN: Successfully segmented different microstructure

variability: fiber radii, matrix crack shape & distribution and fiber-matrix chemical

composition

Confocal microscopy  

micrograph
Filter A Filter B Filter C

Intratow defectsIntratow defects

Intratow defects



• Captured microstructure variability in fiber and porosity volume fractions

• In-progress: fiber radius, intratow spacing, porosity shape and size, & intertow

features
12

Microstructure Variability Quantification

C/SiNC SiC/SiNC

= 𝟓𝟔% ± 𝟔%

C/SiNC

Porosity VF= 𝟑. 𝟕% ± 𝟏%

SiC/SiNC

Fiber VF= 𝟓𝟕% ± 𝟑%

Porosity VF= 𝟒% ± 𝟎. 𝟔%

Fiber VF



Multiscale Simulation of 5HS Woven 

C/SiC CMC
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Need to account for material initial 

damage state & residual stress effects 

due to cooldown during manufacturing 

process 

Skinner, T., & Chattopadhyay, A., Composite Structures (2021)

Thermomechanical progressive damage model accounting for crack 

nucleation & growth

▪ Includes flaw statistics, temperature dependent material properties

▪ Crack growth kinetics governed by fracture mechanics



Reformulated Framework with Cooldown 

Effects
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5HS SiC/SiC

5HS SiC/SiCResidual 

transverse stress

Residual 

longitudinal stress

Residual through-

thickness stress

Residual 

effective stress

Thermal Residual Stresses

Areas with high residual tensile stress have shrinkage cracks; high stress

areas in cooldown framework accumulate damage & exhibit degraded initial 

properties in damage direction



High-fidelity FE Creep Modeling
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▪ Captured transient creep stage due to large constituent creep mismatch, 

followed by steady-state stage

▪ Excellent agreement with CMC total longitudinal strain & constituent 

longitudinal stress time-history

Total longitudinal strain vs. time Constituent longitudinal stress vs. time

3D coupled viscoplasticity-damage model:

▪ Norton-Bailey creep power law 

▪ Hill orthotropic plastic potential

▪ Arrhenius temperature dependence 

▪ Associative flow rule

▪ Time- and strain-hardening formulations

▪ Fracture mechanics-informed matrix damage model

▪ Curtin progressive fiber damage model



High-fidelity FE Creep Modeling, 

Contd.
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Effects of intratow porosity on creep behavior

Prescribed loading: 100 MPa (constant), 1300 °C

Presence of intratow voids affects load transfer mechanism 

between constituents & results in complex stress “hot spots” in 

vicinity of voids - potential damage initiation sites 



Terrani (2014) “Silicon carbide oxidation in steam up 

to 2 MPa”. Journal of the American Ceramic Society.

Damage-diffusion Oxidation 

Coupling
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Jacobson (1999) “High-Temperature Oxidation of 

Boron Nitride: II, Boron Nitride Layers in Composites”.

Oxidation of fiber interface

Oxygen diffusing through cracks

Matrix cracks create passages for oxygen to diffuse 
into material 

▪ Oxidation of fiber interphase or fusion of SiC fiber 
to SiNC matrix impairs load transfer

▪ Oxidation reaction of oxygen-exposed SiNC matrix 
activates at extreme temperatures, resulting in a 
multi-regime response

Physics-based modeling

▪ Model oxidation coupling through the chemical 
reaction source terms for concentrations of oxygen 
and material

▪ Model damage-driven diffusion through 
approximations of the partial differential equations

Model under development to address complex 

coupling between anisotropic damage, 

diffusion, crack closure, & oxidation of the 

fiber-matrix interphase at the microscale



Damage-diffusion Oxidation 

Coupling, Contd.
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𝑫 = 𝑷 ⋅ 𝐷𝑎𝑖𝑟 𝑂2 𝑫 = 1 −
𝑐 𝐵𝑁

𝑐 𝐵𝑁
𝑚𝑎𝑥 𝐷𝑎𝑖𝑟 𝑂2

𝑰

σ = 𝐌𝐂ε

For Interphase:For SiC:

σ = 1 −
𝑐 𝐵𝑁

𝑐 𝐵𝑁
𝑚𝑎𝑥 𝐂ε

𝑷 =

𝑑22ℎ22+𝑑33ℎ33

2
0 0

0
𝑑11ℎ11+𝑑33ℎ33

2
0

0 0
𝑑22ℎ22+𝑑11ℎ11

2

2𝐵𝑁 𝑠 +
3

2
𝑂2 𝑔 → 𝐵2𝑂3 𝑙 + 𝑁2 𝑔

Five degrees of freedom (DOFs) per node: displacement (x, y, z), 

concentration (O2, BN)

Oxidation reaction 1:

Diffusion crack path matrix:

Stress:

Effective oxygen diffusivity:

ሶ𝑐 𝑂2 − ∇ ⋅ 𝑫∇𝑐 𝑂2 + 𝑅𝑐 𝐵𝑁 𝑐 𝑂 2
= 0For 𝒄 𝑶 𝟐

DOF:

ሶ𝑐 𝐵𝑁 + 𝑅𝑐 𝐵𝑁 𝑐 𝑂 2
= 0For 𝒄 𝑩𝑵 DOF:

For displacement DOFs: ∇ ⋅ σ = 0

Governing equations: 



In-situ Tensile Testing
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High & room temperature quasi-static (QS) & creep 

testing for SiC/SiNC using MTS load frame and in-situ

digital image correlation (DIC) technique

Experimental set-up

Hydraulic grip 

system

Digital image 

correlation

DIC speckle 

pattern

30kN MTS load frame 
Amteco Furnace

(>1400 oC)

▪ Two independent heating 

zones for better temperature 

uniformity control

▪ View port access for in-situ 

(DIC) experiments
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Results show good agreement with data from literature

SiC/SiNC CMC stress-strain response and strength

▪ Loading conditions: 

QS strain rate = 1e-5/sec

▪ Temperature conditions:

Room temperature = 24 oC

▪ Gauge region dimensions:

99.0 x 10.2 x 2.5 (mm)

Average tensile strength = 409.34 MPa  (0/90o) & 193.24 MPa (+/-45o)

Average failure strain = 0.4731% (0/90o) & 0.52 % (+/-45o)

*Artz et. al, 2020, International Journal of Solids and Structures, 202, pp.195-207.

*

*

Quasi-Static Tensile Testing, Contd.



Outcomes:

▪ Assessment of accuracy and efficiency of lifing model for material 
systems, geometries, and loads relevant to RTX

▪ Technology readiness level (TRL) evaluation of modeling framework 

▪ Validate simulation results against in-house lifing tools 

Integrated Multiscale Framework

21This page contains no technical data subject to the EAR or the ITAR.

Challenge & Goal:

Raytheon’s role includes evaluating multiscale models for industrial 

applications (i.e., relevant materials, geometries, loads)

Multiscale Lifing

Framework

FEA Integration



Machine Learning Surrogate Model
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Surrogate models will help bridge gap between high-fidelity multiscale 

models and industrial application

Approach:

Neural network-based 

surrogate model 

architecture▪ Efficiently approximate 
output of physics-based 
models

▪ Neural-network based 
surrogate model –
trained on experimental 
and simulation data

▪ Physics-based 
regularization to enforce 
physical laws

𝑙𝑃 = 𝑅𝑒𝐿𝑈 − ሶ𝑤𝑝

𝑙𝑇 = 𝜆𝑀𝑆𝐸𝑙𝑀𝑆𝐸 + 𝜆𝑃𝑙𝑃

𝑙𝑀𝑆𝐸 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝑦𝑖
𝑝 2

Physics-based 

regularization

Surrogate model will run much faster than numerical solution - making

large-scale multiscale simulations more feasible

This page contains no technical data subject to the EAR or the ITAR.
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As proof-of-concept, surrogate model trained and evaluated using nonlinear 

plasticity numerical model

Results:

Validation results – Piecewise 

linear reverse loading 

Validation results – Cyclic random 

amplitude, random frequency loading

Machine Learning Surrogate Model, 

Contd.

Excellent agreement between ML surrogate and training data

This page contains no technical data subject to the EAR or the ITAR.

*Borkowski, Sorini and Chattopadhyay (2021)
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Surrogate Model for Woven CMC 

Material System

This page contains no technical data subject to the EAR or the ITAR.

Surrogate model developed, trained, and tested for woven CMC under 

cyclic loading conditions

CMC damage model

▪ RNN-based surrogate model 

prediction includes homogenized 

constitutive response of multiple 

constituents (fiber, matrix, 

interphase)

▪ Physics-based regularization to 

enforce physical laws (e.g., 

tangent stiffness matrix positive 

semi-definiteness) and maintain 

linear elastic unloading

▪ Nonlinear tensile cyclic loading 

response of plain weave CMC 

governed by progressive matrix 

damage model

𝑙𝑃𝑆𝐷 = 𝑅𝑒𝐿𝑈 −
𝜕𝜎𝑖

𝑝

𝜕𝜖𝑖

𝑙𝑇 = 𝜆𝑀𝑆𝐸𝑙𝑀𝑆𝐸 + 𝜆𝑇𝑀𝑙𝑇𝑀 + 𝜆𝑃𝑆𝐷𝑙𝑃𝑆𝐷

𝑙𝑀𝑆𝐸 =
1

𝑛
෍

𝑖=1

𝑛

𝜎𝑖 − 𝜎𝑖
𝑝 2

Physics-based regularization

𝑙𝑇𝑀 =
1

𝑛
෍

𝑖=1

𝑛
𝜕𝜎𝑖
𝜕𝜀𝑖

−
𝜕𝜎𝑖
𝜕𝜀𝑖

𝑝 2

Skinner & Chattopadhyay 

Composite Structures. 2021.
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Surrogate model shown to perform well in predicting CMC cyclic behavior, 

including unloading

▪ Training data generated using 

Multiscale Generalized Method of 

Cells (MSGMC) micromechanics 

model

▪ Uniaxial load / unload cycles 

applied (up to four) at random 

points during loading and of 

varying unload magnitudes

Sample loading histories

Surrogate model validation

Test case 45 Test case 3

Test case 3

Test case 45

Surrogate Model for Woven CMC 

Material System, Contd.



Concluding Remarks

▪ Developed concurrent & efficient high-fidelity multiscale simulation 
methodology

▪ Characterized scale-dependent architectural variability & defects in C/SiNC and 
SiC/SiNC CMCs material systems using SEM, EDS, X-ray Micro-CT, and 
confocal microscopy

▪ Developed microstructure generation algorithm accounting for material 
variability and defects, captured from detailed characterization study

▪ Developed ML-based techniques to facilitate image segmentation, scale-
dependent variability quantification, and SRVE generation 

▪ Developed multiscale cooldown framework and temperature-dependent 
damage model - i) simulates manufacturing-induced damage & thermal 
residual stresses; ii) captures nonlinear thermomechanical response

▪ Developed 3D orthotropic viscoplastic creep constitutive model & 
implementation in i) GMC micromechanics framework; ii) ABAQUS commercial 
FEA via UMAT

▪ Formulated oxidation model with complex coupling between anisotropic 
damage, diffusion, crack closure, & hygrothermal effects

▪ Developed NN-based surrogate model to facilitate computationally efficient 
information transfer across multiple analysis length scales

▪ Conducted in-situ quasi-static tensile testing using digital image correlation

26



Future Work

▪ Development of conditional generative adversarial 

network for experimentally-inspired SRVEs

▪ Hybrid µCT-microscopy segmentation approach for 

mesoscale 8HS SiC/SiNC CMC SRVE

▪ High-fidelity SRVE simulations including damage 

and creep

▪ Integration of oxidative-damage model into 

multiscale framework

▪ Extension of ML-surrogate model to account for 

viscoplasticity and damage anisotropy

▪ Dwell-fatigue testing & modeling 
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