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Objectives

• Develop an experimental test facility to determine overall cooling 
effectiveness and adiabatic effectiveness for a variety of combined film 
cooling and internal cooling configurations.

• Evaluate the performance of the 15-15-1 RI shaped film cooling hole 
(previously determined to be optimum for film cooling effectiveness) with:
• A co-flow internal cooling channel with and without rib turbulators
• With and without TBC (Thermal barrier coating).

• Evaluate the accuracy of RANS CFD predictions for these cases. 
• Compare the performance of “as built” (using engine scale, metal AM builds) 

shaped holes to the “as designed” holes.  The holes tested were designed to 
mitigate the effects of roughness caused the by the AM builds.
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Experiments utilized UT Austin low-speed flat plate wind 
tunnel facility

• Closed circuit wind tunnel with very low humidity air.

• Coolant flow circuit is cooled with LN2 to obtain high density ratio coolant flows.
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A new test section was installed which enables studies of overall 
and adiabatic film cooling effectiveness performance for various 
film cooling hole and internal cooling configurations.

• Turbulence grid 
upstream (Tu = 5%).

• Density ratio DR = 1.2

• Two test surfaces are 
used:
• “Adiabatic” foam

• Matched-Biot number 
Corian
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Configuration used to evaluate combined internal cooling 
and film cooling performance.
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Measurement of 𝜙 requires a matched Biot number model and 
matched ℎ𝑓/ℎ𝑖

A simplified 1-D analysis using Taw as 
the driving temperature shows: 

𝜙 =
1 − 𝜂

1 + 𝐵𝑖 +
ℎ𝑓
ℎ𝑖

+ 𝜂

• At lab scale, it is important to 
match ℎ𝑓/ℎ𝑖, the ratio of internal 
to external heat transfer 
coefficients.

• If these two nondimensional 
parameters are matched to engine 
conditions, the lab results for 𝜙 will 
be comparable to the engine.

𝐵𝑖 =
ℎ𝑓𝑡

𝑘
ℎ𝑓:  Heat transfer coefficient with film cooling

𝑡:  Wall thickness
𝑘:  Solid thermal conductivity
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Turbulators enhance overall cooling 
effectiveness for integrated cooling 
designs

• Smooth channel shows little 
change in ത𝜙 between VR = 1.7-3.0

• Turbulated channel shows 
maximum ത𝜙 at VR = 1.7

• At VR = 1.7, turbulators increase ധ𝜙
by 27%

• At VR = 3.0, downstream of holes 
𝑉𝑅𝑐 = 0.07, leading to significantly 
reduced cooling performance for 
the turbulated channel case.

𝑉𝑅𝑐 = 0.2

Smooth Turbulated
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Measurements of overall cooling effectiveness with no film 
cooling ( ധ𝜙0), highlights the improvements with  turbulators and 
with TBC.

• At 𝑉𝑅𝑐 = 0.2, TBC provides an 
increase of:
• Smooth channel:  Δ ധ𝜙 = 0.25 

(110%)

• Turbulated channel: Δ ധ𝜙 = 0.28 
(90%)

TBC

No TBC
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Comparison of performance with 
TBC and film cooling using smooth 
and turbulated channels:

• Comparisons of film cooled cases with 
internal cooling cases show improved 
overall cooling effectiveness with film 
cooling

• However, for the case with turbulators, 
the difference is small.

• For the turbulator case, maximum 
performance occurred at minimum VR = 
0.7.

Turbulated
𝑉𝑅𝑐 = 0.2

Smooth
𝑉𝑅𝑐 = 0.2



10

Comparisons of overall cooling effectiveness with and without 
TBC show the large increases in performance with the addition of 
TBC. 

• Designs with TBC show a 
noticeably higher f upstream of 
the film cooling hole, indicating 
the extended effects of bore 
cooling when using TBC.

• Thermal gradients are reduced 
near the hole.

• The TBC increases f by about 
50%, where as use of turbulators 
increases f an additional 10%.

𝑉𝑅𝑐 = 0.20, 𝑉𝑅 = 1.7

TBC, no film
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Comparisons of CFD predictions with measurements when using 
TBC show that overall cooling effectiveness performance is 
slightly overpredicted for smooth channels and significantly 
overpredicted with turbulators.

Smooth internal channel Internal channel with turbulators

TBC cases, VRc = 0.2 
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CFD simulations show temperature distributions in the “metal” 
due to combined internal and film cooling with and without 
turbulators and TBC

• These thermal fields 
show the significant 
additional cooling due 
to turbulators and 
TBC

• Thermal gradient are 
significantly reduced 
with TBC.

• Cooling effects 
upstream of the 
coolant hole are 
noticeably enhanced 
when using TBC
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Experimental models used to evaluate the “as built” engine scale metal 
AM models by comparing with a large scale “as designed” models.

1x scale metal AM build

All models are for the 9-9-3 RI shaped hole. 

Cross-section along hole centerline

Hole outlet

5x scale PLA AM builds

Cross-section and hole outlet for the “As Designed” hole

Cross-section and hole outlet for the “As Built” hole
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Spatially averaged overall and adiabatic cooling effectiveness for 
varying “as built” and “as designed” hole geometries.

• The RI (rounded inlet) and RIE (rounded inlet 
and exit) 9-9-3 holes were designed to 
mitigate the effects of the AM build 
roughness 

• Generally there was negligible difference 
between the “as designed” and the “as 
built” models tested.

• Computational predictions followed the 
same trends as the experimental results, 
though predicted noticeably higher 
performances at the intermediate VRs

Overall cooling 
effectiveness

Adiabatic 
effectiveness

9-9-3 shape holes

Spatially averaged over x/D = 5 to 30
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Conclusions

• The new test facility at UT allows efficient testing of overall cooling 
effectiveness and adiabatic effectiveness for a wide variety of combined 
internal and film cooling configurations.

• For all cases tested, film cooling provided an improvement in cooling 
effectiveness compared to internal cooling alone, although for the case with 
internal turbulators and external TBC, the internal cooling alone was close to 
the combined film and internal cooling.

• RANS computations generally provided reasonable predictions of 
performance, but overpredicted overall effectiveness when TBC was added.

• The RI and RIE film cooling hole designs effectively mitigated the effects of 
roughness due to engine scale, metal AM builds.



Penn State’s START Lab will cover results of both film cooling, shaped 
microchannel cooling, and build effects on surface roughness

Film Cooling Results

Shaped Microchannel Results

Effect of Build on Channel Roughness
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The holes printed close to the design intent, but with noticeable roughness 
features at the inlet of the hole
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Rounding features in the metering section of the hole increases the amount of 
coolant that will pass through for a given pressure ratio

FP =
ሶmf Rc Tc

Pc Ac,m
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Pc
P∞
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A coupon with no film-cooling hole was used to normalized the effectiveness, 
thereby focusing in on the film-cooling effects
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Compressibility does not have a significant effect on the cooling performance

Ma∞ = 0.30
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The co-flow optimized holes have higher effectiveness augmentation than the 
base shaped holes at the lower blowing ratios
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Unlike CFD, experiments do not show a separation in the hole causing bifurcation 
of the coolant jet
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Jones, F. B., Oliver, T., and Bogard, D. G., 2021, “Adjoint Optimization of Film Cooling Hole
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Further studies will look focus more towards the effect of the internal channels

Rib Study
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Multiple channels were fabricated with different channel shapes at the 90° build 
direction to investigate the impact shape has on cooling performance
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Scaling friction factors were compared with that proposed by Duan et al. 2012 using Ac
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Nusselt number using Ac reduces scatter compared to using Dh for different channel shapes
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The diamond exhibits the lowest friction factor and Nusselt augmentation, while the 
square and trapezoid showed the highest friction factor and Nusselt augmentations
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A higher surface roughness is observed on the 6 and 12 o’clock surfaces relative to all other 
internal surfaces, despite all channels being fabricated at the 90° build direction
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Multiple samples were designed in order to investigate the cause for the high surface 
roughness seen in the 90° internal channels
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CT scan measurements show that arithmetic mean roughness increases as wall 
thickness decreases
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A correlation was created to predict the pressure loss and convective heat transfer of 
additively made cooling passages with different channel sizes, materials, and build directions
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The combined effects of channel shape and roughness results in 
impacts to pressure loss and heat transfer augmentation

The influence of build parameters are being investigated to explain the 
cause for high surface roughness in vertical channels

Overall, the AM process captures the features of the cooling holes, 
with some variations due to surface roughness

The surface roughness within the cooling holes can significantly change 
the type of cooling pattern from the computational prediction


