Low-leakage seals for utility-scale sCO₂ turbines DE-FE24007

GE Research Rahul Bidkar (PI) Uttara Kumar Hector Rodriguez Deepak Trivedi Xiaohua Zhang

Southwest Research Institute

Thomas Kerr Aaron Rimpel Natalie Smith

Contract No. DE-FE0024007 Contractor Name: General Electric Research Contractor Address: One Research Circle, Niskayuna, NY 12309

Acknowledgement: "This material is based upon work supported by the Department of Energy under Award Number DE-FE0024007"

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Outline

- Program Overview
- Recap of subscale testing (2017-2019)
- Radial Seal Testing (2020)
- 24-inch Seal Fabrication (2020-2021)
- 24-inch rig commissioning, seal assembly, ongoing tests (2021)

Overview of Utility-scale sCO₂ Seals Program

GE Public Class 1

3 / sCO₂ Seals DE-FE24007 UTSR 2021 10/25/2021

End Seals in sCO₂ turbines

- Face seals are worth ~0.55% points cycle efficiency compared to labyrinth seals
- Face seals needed for utility-scale sCO₂ turbines (24-inch diameter, 1000 psia pressure differential) not readily available

P_{low}

Feed port

Face seals worth ~0.55% points cycle efficiency for large sCO₂ cycles

imagination at work

GE Public Class 1

47 sCO₂ Seals DE-FE24007 UTSR 2021 10/25/2021 Seal Working Principle

Film-riding Seals working principle

Film Thickness or Gap

- Seal equilibrium balance of forces
- **Opening force**
 - Hydrostatic pressurization/hydrodynamic grooves
 - Positive film stiffness: force increases with reducing film thickness
- Film stiffness
 - Needed for faithful dynamic tracking against inertia, friction, pressure
 - Loss can lead to seal rubs and seal failure
- sCO2 working fluid has unique challenges

Film-riding seals operate with very thin films (0.001 to 0.002 inch) separating the rotor & seal

Face Seals and Radial Seals

- Film & sealing on axial face
- Need to withstand rotorstator axial motion

- Film & sealing on radial face
- Need to withstand rotorstator radial motion

Both types of seals are important depending on sealing location, size envelope & operating condition requirements

7 / sCO₂ Seals DE-FE24007 UTSR 2021 10/25/2021 Quick Re-cap of Testing (2017-2019)

Summary of Tests to Date

Room temp Pin-on-disk Coatings tests

CrC/CrN, AlTiN(Mo,W)S2, DLCs identified as optimal coatings

3-inch diameter, Static Medium temp tests with sCO2 (IGTI 2018, 2019)

Hydrostatic lift with sCO2 working fluid, excellent match with CFD

Room temp Static Flow tests to measure Heat Transfer Coeff. (IGTI 2018)

Measured & Predicted HTCs match reducing thermal model uncertainty

5-inch diameter, Rotating Room Temp tests wit<u>h Air</u>

Split Seal demo in air, Low leakage ~0.45 mils, excellent match with design tools

9 / sCO₂ Seals DE-FE24007 UTSR 2021 10/25/2021

imagination at work

Radial Seal Testing Summary (2020)

Radial Seal Testing

Radial Seal

Radial Seal Assembly

Seal Assembly with Rotor

Seal assembled in GE rig

GE Public Class 1

11 / sCO₂ Seals DE-FE24007 UTSR 2021 10/25/2021

Radial Seal Testing

Time (seconds)

High-speed rotating tests (room temp rig) completed to successfully demonstrate TRL3 for Radial Seal Technology

12 / sCO₂ Seals DE-FE24007 UTSR 2021 10/25/2021

24-inch Seal Testing

(Rig Assembly)

Test rig overview

MECHANICAL ENGINEERING

Pump loop installation completed/Pump Debugging Complete

- Pump & tanks inspected
- Piping modifications complete
- Pump loop instrumentation & alternate power supply arrangement completed
- Pump troubleshooting DGS failure
- DGS replacement completed
- Test rig commissioning with Pump Flow Loop -ongoing

GE Public Class 1

swri.org

24-inch seal Assembly

1. Seal assembled

2. Seal attached to end cap

imagination at work

3. End Cap Assembly

4. PV Center Piece Assembly

24-inch seal testing commences Nov 2021

5. Second End Cap (without seal)

6. Test Rig ready for second seal

sCO₂ Seals DE-FE24007 UTSR 2021 10/25/2021

High-temp Dry Gas Seals for sCO₂ turbines DE-FE0031924

GE Research Rahul Bidkar (PI) Uttara Kumar Hector Rodriguez Xiaohua Zhang Southwest Research Institute Stefan Cich

Contract No. DE-FE0031924 Contractor Name: General Electric Research Contractor Address: One Research Circle, Niskayuna, NY 12309

Acknowledgement: "This material is based upon work supported by the Department of Energy under Award Number DE-FE0031924"

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Outline

- Overview
- Commercial DGS Failures & Need for High-temp DGS
- Technical Approach
- Thermal Modeling and Plan for testing DGS

Overview

18-month, \$1.25MM Program to Develop High-temperature Dry Gas Seals (DGS) for sCO₂ turbines

Program Objective: Large-diameter, High-temperature 650° C-capable DGS design for a 100 MW_e Coal FIRST plant using TRL5-validated seal design tools

- 10 MW_e scale Improved reliability of DGS and validation of Seal Design Tools
- 100 MW_e scale High-temp seal to enable modular sCO₂ Coal FIRST turbines

DGS Reliability Issue – 10 MW_e scale

Value of High-temp DGS Development

- State-of-the-art low-temp (200 °C) commercial DGS
 - 0.5% to 1.3% cycle efficiency
 - Limit operating ramp rates of turbines
- High-temp DGS (up to 700 °C)
 - Enable 0.7% to 1.9% cycle efficiency
 - Enable alternative turbine architectures
 - better turbine ramp rates & operation flexibility
 - Higher ramp rates

Turbomachinery	Application	Location and Temperature	Cycle Efficiency Benefit
10 MW _e sCO ₂ turbine	WHR, CSP, NGPC, Coal FIRST risk reduction	Shaft-end labyrinth seals (200°C)	0 (baseline)
		Shaft-end DGS (200°C)	1.32%
		Shaft-end and Balance-piston DGS (700°C)	1.96%
10 MW _e sCO ₂ com- pressor	WHR, CSP, NGPC, Coal FIRST risk reduction	Shaft-end labyrinth seals (200°C)	0 (baseline)
		Shaft-end DGS (200°C)	1.32%
		Shaft-end and Balance-piston DGS (200°C)	1.9%
100 MW _e sCO ₂ turbine	Coal FIRST	Shaft-end labyrinth seals (200°C)	0 (baseline)
		Shaft-end DGS (200°C)	0.71%
		Shaft-end and Balance-piston DGS (700°C)	0.85%
450 MW _e sCO ₂ turbine	Fossil indirect coal plant	Shaft-end labyrinth seals (200°C)	0 (baseline)
		Shaft-end DGS (200°C)	0.52%

Goal # 1 Reliability

Goal # 2 Higher -Temps

/ 22 High-Temp sCO₂DGS UTSR 2021 10/25/2021

Task Structure

Task 1 Project Management (GE)

Co-ordination, Reports, finances, Mtgs

Task 2 10 MW_e-scale DGS

- Understand existing seal failure data (GE/SwRI)
- Analyze Commercial DGS (GE)
 - Measure seal geometry/CAD
 - CFD Model
 - Thermal model in Apollo machine
 - Mech deformation studies
- Modify commercial DGS (GE with seal vendor)
- Instrumented Flowserve DGS test at SwRI in Apollo compressor (SwRI)
- Validated Design Tool & Root cause (GE)

Task 3 100 MW_e-scale seal

- Design High-Temp Field Trial Seal (GE)
 - Seal cross-section
 - CFD Model
 - Thermal model in Apollo machine
 - Mech deformation studies
- GE Rig Test (Existing hardware from Ongoing Program) (GE)
 - Oxidize hardware
 - GE rig tests

Thermal Modeling of DGS in Compressor

In-house FE-based thermal solver

Temperature prediction for compressor

Existing sCO₂ compressor at SwRI

- In-house thermal solver accounts for CO2 real-gas properties, windage, CFD-based leakage flows, heat transfer coefficients
- High temperatures (and large thermal deformation) predicted near Drive-End DGS due to a combination of large heat generation and low cooling flow
- Compressor modifications and DGS fabrication (with sensors) ongoing to test and validate predictions of thermal model in Feb 2022