

Selective Porous Polymer Networks Supported on Hollow Fiber Superstructures for Direct Air Capture of CO₂

UCFER Annual Meeting

Tuesday, October 5th 2021

Hong-Cai "Joe" Zhou & Benjamin Wilhite

Department of Chemistry & Department of Chemical Engineering

Texas A&M University

Texas A&M UNIVERSITY Texas A&M Energy Institute

- Background
- Porous polymer network (PPN) candidates
- PPN modifications
- Collaboration with NETL
- Summary
- Acknowledgement

Background

> Global average temperature

Green house gases

Roughly 1.2 °C increase

CO₂, dominant green house gas

CO₂ and greenhouse gas emissions. <u>www.ourworldindata.org/</u> (accessed September 26, 2021)

Methods for Carbon Capture

Post-combustion CO₂ separation

Direct air capture (DAC)

Mixed matrix membrane (MMM)

Amine-functionalized cellulose acetate silica fiber sorbents

Shouliang Yi, Ali K. Sekizkardes, Nathaniel L. Rosi, et al., *ACS Materials Lett.*, **2020**, *2*, 821 Ryan P. Lively, et al., *ACS Sustainable Chem. Eng.*, **2019**, *7*, 5264

Challenges in DAC and Solutions

Low concentration, 400 ppm

Amine functionalization

Stephanie A. Didas, Georgia Institute of Technology: **2014** Ryan P. Lively, et al., *ACS Sustainable Chem. Eng.*, **2019**, *7*, 5264

Sorption and regeneration

Rapid temperature swing adsorption (RTSA)

Porous Polymer Networks-Based Hollow Fibers for DAC

Porous polymer networks (PPNs) > The proposed idea

Porous, stable, functionalizable, CO₂ adsorption and selectivity

Mercouri G. Kanatzidis, et al., *Chem. Mater.*, **2011**, 23, 1818 Hong-Cai Zhou, et al., *Angew. Chem. Int. Ed.*, **2012**, *51*, 7480

PPN sorbent + RTSA method

PPN Candidates – PPN-125-DETA (diethylenetriamine)

Working capacity: 1.0 mmolg⁻¹ (4.0 wt%) (comparable to monoethanolamine (MEA) solutions) Low cost, controllable pore size

PPN Candidates – PPN-150 Series

Working capacity: 5 wt% (dry), 18 wt% (wet) Regenerative energy: 82.8 kJ/mol CO₂ (MEA, 185 kJ/mol CO₂) Low cost, large scale preparation

Hongcai Zhou, et al., Adv. Sustain. Syst., 2019, 3, 1900051

Modifications of PPNs

Much higher (2-3X) amine density!

Modifications of PPNs

> Reimer-Tiemann reaction

PPN-125 modification

Product 2 can be the dominant

Rosa Tormos, et al., Tetrahedron, 1995, 51, 5825

Enlarge the Pore Size – Method 1

Blend monomers with less branches

Enlarge the Pore Size – Method 2

Directly connect to DETA to reduce the long side chain

Hongcai Zhou, et al., ChemSusChem, 2015, 8, 433

Collaboration with NETL

Drs. David Hopkinson

Ali Sekizkardes

Shouliang Yi

Hongcai Zhou, et al., *ChemSusChem*, **2015**, *8*, 433 Hongcai Zhou, et al., *Adv. Sustain. Syst.*, **2019**, *3*, 1900051

Preliminary Results

50 wt% PPN-151-DETA@cellulose acetate (CA)

- Highly porous for carbon capture
- Durable and robust

Future Plan

Smaller size of PPN powders for better results

> 90 wt% PPN@polymer matrix

- Reason: high compatibility between PPN and polymer matrix
- Amazingly high loading ratio
- Up to 90% CO₂ uptake of PPN's powder form
- Much better than silica-based or MOF-based sorbents due to their relatively low loading capability in matrices

- Hollow fiber supported PPN sorbents for DAC
- PPN candidates selection
- PPN modification and pore size adjustment
- Collaboration with NETL
- Preliminary result collection
- Promising high loading ratio and CO₂ uptake

Acknowledgements

Dr. Ali Sekizkardes Dr. David Hopkinson

- Dr. Shouliang Yi Dr. David Lang
- Dr. Benjamin Wilhite & Naveen Mishra (Chemical Engineering)
- Fan Chen & Peiyu Cai (Chemistry, Zhou group)

Thank you! Questions?

PPN-6-CH2-DETA

Simulated using ideal adsorption solution theory (IAST) with ultradilute CO₂ 400 ppm

Strength: microporous, ultra-high selectivity, high CO₂ loading efficiency (1.04 mol/kg) Defect: expensive

Methods to synthesize PPN-6 at low cost is wanted

Hongcai Zhou, et al., J. Phys. Chem. C, 2013, 117, 4057

Plans for More Attempts on PPN-125

Surface area drop after modification

Hongcai Zhou, et al., ChemSusChem, 2015, 8, 433

Consideration of materials with much larger surface areas

COFs with high BET surfaces

William R. Dichetel, Seth R. Marder, et al., Adv. Mater., 2020, 32, 1905776