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Overcoming MeS Equilibrium Limitations
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Lab-Scale MCR System  

H2/CO/CO2

Sweep Liquid

H2/CO/CO2 + Methanol

Sweep Liquid+ Methanol 

Liquid 

Flow

Gas 

Flow

Membrane

Liquid 

Phase

Gas 

Phase

MeOH



MeS-MCR Advantages

▪ Higher Process Synergy - From combining reaction and 

separation in the same unit 

▪ Overcoming Equilibrium Limitations - Through in-situ 

product removal

▪ Higher Energy Efficiency - The liquid sweep also serves 

as an effective coolant

▪ A More Compact and Flexible Design



Project Objectives

• Investigate the performance of novel integrated process combining a  

RWGS reactor (RWGSR) and a MCR for efficient methanol synthesis 

from waste CO2.  Study its performance for a broad range of pressure 

and temperature conditions.

• Use an experimentally-validated model to assess the full range of 

attainable conversions, aiming to obtain >90% carbon capture and 

utilization.

• Carry out a techno-economic analysis (TEA) of the proposed 

RWGSR/MCR process to compare performance with that of the 

conventional, absorption-based carbon separation and capture (CSC) 

technologies.



Project Tasks and Timeline

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

  Task 1.0 - Design and Construction of the RWGS-MCR MeS System 

  Milestones

  a) RWGSR component constructed      ♦

  b) WGSR and MCR-MeS components combined     ♦

  Task 2.0 - Testing of the Individual RWGSR and MCR Sub-Systems 

  Milestones

  c) Performance of the RWGSR determined     ♦      

  d) Performance of the MCR -MeS subsystem studied     ♦     

  Task 3.0 - Testing of the Proposed CO2 Separation/Capture Process in the 

RWGS-MCR MeS System 

  Milestones

   e) Testing of the RWGSR-MCR system processing flue gas completed              ♦

   f) Analysis of the experimental data completed        ♦

  Task 4.0 - Mathematical Modeling and Process Optimization 

  Milestones

  g) RWGSR-MCR model validated by experimental data          ♦

  h) Design of scaled-up system completed     ♦      

  i)Optimization of  scaled-up system completed     ♦      

  Task 5.0 - Preliminary Process TEA 

  Milestones

  j) Preliminary system TEA completed     ♦     

  k) Final report prepared and submitted     ♦

Quarters



Membrane Modification

Layer Material

Thicknes

s

(µm)

Average 

Pore Size 

(Å)

Support α-Alumina 1100 2000-4000

First Layer α-Alumina 10-20 500

Second 

Layer
𝛾-Alumina 2-3 100

Length (cm) 9

Outer Diameter (mm) 5.9

Inner Diameter (mm) 4.7

Properties of the ceramic membrane • Modified Ceramic Membrane

– Hydrophobic Instead of Hydrophilic (OH-)

– Avoid Complete Wetting of the Membrane

– Fluoroalkylsilane (FAS) Agents  



Sweep Liquid

❑ Highly polar compounds; MeOH has considerably higher solubility than CO and H2

in them

❑ Typical IL’s have extremely low vapor pressures (<10-9 bar), which is advantageous 

when compared to other low boiling point (B.P.) organic solvents 

❑ Significantly simplified downstream separation of the MeOH from the solvent

❑ Very high decomposition temperatures

❑ High thermal capacity (thermal energy storage) 

Tetraethylene glycol dimethyl ether (TGDE)

Ionic liquid advantages Ionic liquid advantages 

Ethyl-3-methylimidazolium tetrafluoroborate

Ionic Liquid (IL) Organic Solvent



CO2 Solubility in the IL 
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MeOH Solubility in the IL and TGDE
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MeS-MCR Performance



IL Stability Under Reaction Conditions 
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MeOH/H2O stripping

400 MHz 1H Nuclear Magnetic Resonance (NMR) Results of the [EMIM][BF4] IL

NMR studies show that the  IL structure is stable and no irreversible bonds 

with methanol and water are created. 



Task 1.0 – Design and Construction of 

the RWGSR/MCR MeS System 



Schematic of Experimental Set-up



Lab-Scale Experimental Set-Up

The combined RWGSR and MCR-MeS system.



Task 2.0 – Testing of the Individual RWGSR 

and MCR MeS Subsystems 



MeS Kinetic Studies 

▪ Packed-Bed Reactor Model
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▪ Rate Expressions



Rate Parameter Estimation

Temperature-Dependent Rate Constants  

A(i) B(i)

k5
1.459928 31575.31

k4
18766.2 -0.00451

k3 7.79461E-7 91306.78

k2 4.64815E-11 126110.78

k1 153463133.88 -73698.32

K = A(i)exp(-B(i)/RT)



RWGSR Performance at Equilibrium

CO2 equilibrium conversion in the RWGSR CF of gas mixture at the exit of the RWGSR at equilibrium.
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MeS-PBR Conversion at Various T and CF

(a) P= 20 bar, (b) P=25 bar, (c) P=30 bar; dots are the experimental points and surfaces are model calculations 

a)
b)

c)



MeS-PBR Conversion at Various P and CF

(a) T= 200 oC, (b) T=220 oC, (c) T=240 oC; dots are the experimental points and surfaces are model calculations 

a)
b)

c)



PBR and MCR Conversion vs. W/F, Varying T 

SN=2, P=30 bar, CF=0.37 (Left Side Plot), CF=0.502 (Right Side Plot)



PBR and MCR Conversion vs. W/F, Varying P  

SN=2, T=220 oC, CF=0.37 (Left Side Plot), CF=0.502 (Right Side Plot)



SN=2, P=30 bar, CF=0.37, W/F=20 Kg*s/mol
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PBR and MCR Conversion vs. LF, Varying P 

SN=2, T=220 oC CF=0.37, W/F=20 Kg*s/mol
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Progress To Date

• RWGSR/MeS-MCR lab-scale system designed and constructed.

• Performance of the MeS-MCR subsystem studied and its ability to 

functions as a 2nd stage  following the RWGSR validated.  

• In-house MeS kinetic model validated with the additional MeS-PBR 

data generated under conditions relevant to the proposed application.

• RWGS catalyst prepared and characterized. Testing to evaluate its 

catalytic performance under relevant experimental conditions 

currently ongoing.



Future Work

• Continue and complete the performance evaluation of the RWGSR 

subsystem. Initiate and complete the study of the integrated 

RWGSR/MeS-MCR system to evaluate  its performance for a broad 

range of pressure and temperature conditions.

• Use the experimentally-validated model for process design and scale-

up to assess the attainable region of conversions, aiming to obtain 

>90% carbon capture and utilization.

• Carry out a techno-economic analysis (TEA) of the proposed 

RWGSR/MeS-MCR process to compare performance with that of 

the conventional, absorption-based carbon separation and capture 

(CSC) technologies.



Potential Areas of Collaborative Work with NETL

• Preparation and characterization of novel RWGS catalysts 

(ongoing).

• Optimizing engineering design and reaction conditions for the novel 

CSC process and evaluating their impact on the balance of plant.

• Evaluating the economics and environmental aspects of the CSC 

process, and comparing them with those of the absorption-based 

processes.
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