UCFER- An Economically-Viable Technology for Production of Coal-derived Aerogel Insulation Envelope

University of Kentucky
Center for Applied Energy Research
Lexington, KY
http://www.caer.uky.edu/powergen/home.shtml

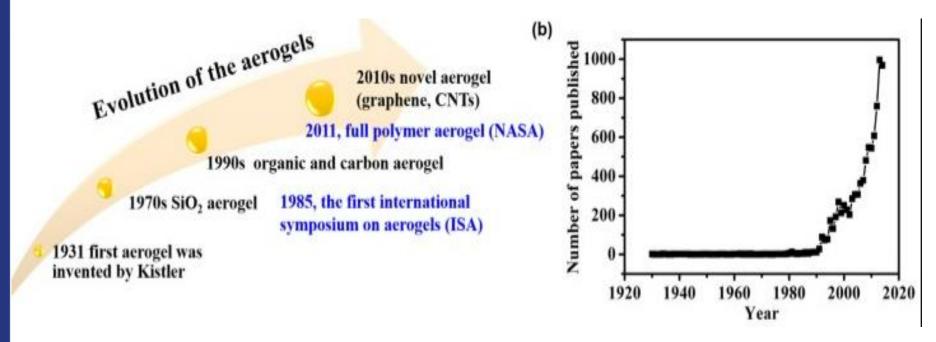
06-UKy-Y1-28 October 6, 2021

Objective

To develop An Economically-Viable Technology for Production of Coal-derived Aerogel Insulation Envelope

(Thermal Resistance R-values of 14 to 105)

Outline

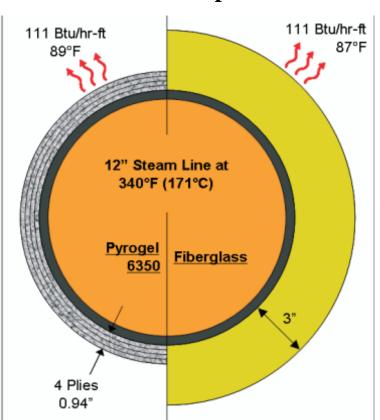

- Background
- Objective
- Approach
- Project Details

Background

DOE believes that advances in coal-derived building materials, such as carbon foam (graphitic or non-graphitic), roofing tiles, siding, insulation etc can be a viable way to provide:

- Lower price or superior properties to existing building materials
- New value-chain of industrials that do not use coal in manufacturing process.
- **≻**Reduce GHG (CO₂) emissions

Background Evolution of Aereogel

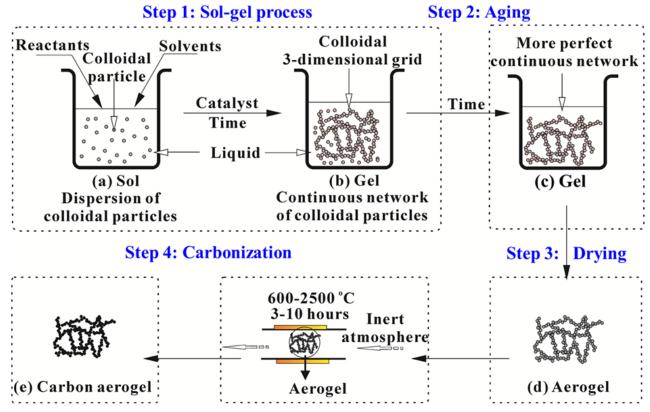


Compared to single component aerogel, plastic/metal oxide reinforced aerogel combined better flame retardance, physical strength and thermal conductivity

R-value: 0.024 W/m/K BET: >200 m²/g >95% macroporosity >500 °C stable

Background Federal and Industrial Programs

EERE- BTO report



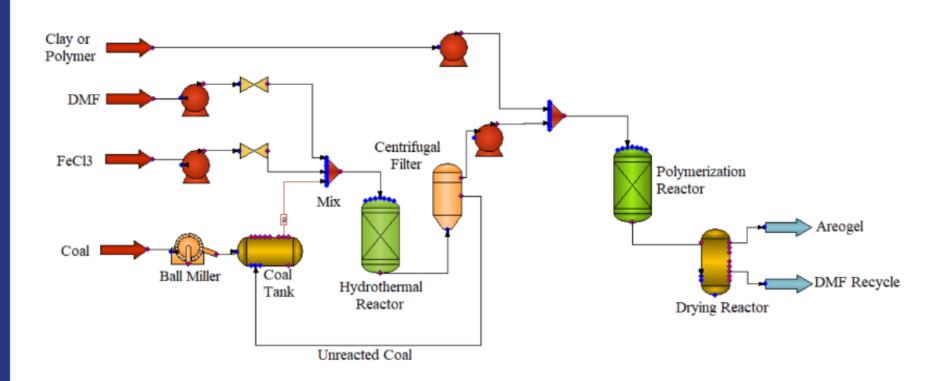
Less than 1" of aerogel-based insulation is equivalent to 3" of fiberglass. The aerogel-based insulation also requires 20% less cladding and binding

Provided by industrial partners

Background General Approaches for Carbon Aerogel Foam

- + Step 4 is not necessary for current program because of physical strength is necessary
- + Coal depolymerization is the most critical step: Concentrated HCl/HNO₃ solvent
- >120 °C operation, >24 hour reaction, four steps

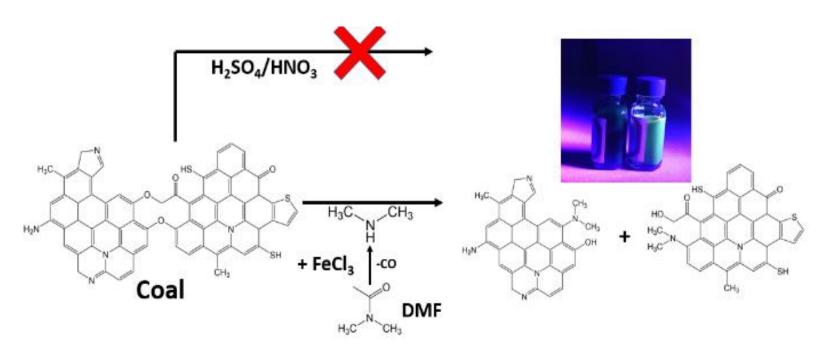
Objective

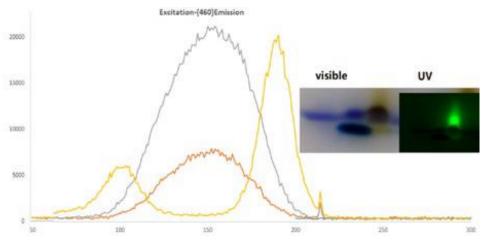

UCFER- An Economically-Viable Technology for Production of Coal-derived Aerogel Insulation Envelope

- Demonstration of depolymerization of coal into carbon nanoparticle under mild condition: (<150 °C, <2 hour, <0.3MPa)
- Validate production of PVC (~15%) or Clay- reinforced carbon aerogel production

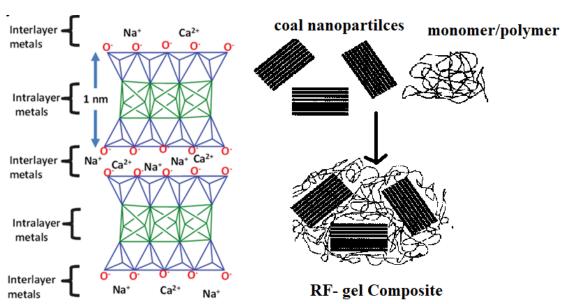
(yield >30%, >1Kg/day, density ~ 2.4 g/cm³ and BET area 300 m²/g.)

• Thermo-mechanical characterization of coal-derived aerogel envelopes

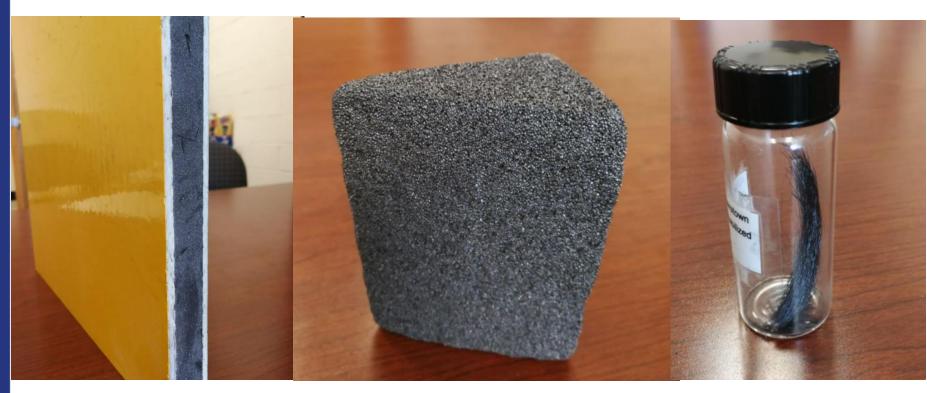

Summary of Patented Technical Approach



WO 2021041897 and US 2019-62893385


Dr. Tian and George Institute of Technology

Success Validation of Carbon Quantum Dots Production from Coal



Success Validation of Carbon Aerogel (Foam) for Carbon Nanoparticles

Success Validation of Coal-derived Building Envelope, Carbon Foam, and Carbon Fibers Developed in Dr. Tian's Lab

Project Schedule

_											
	TASK NAME	TEANA MATARET	Year 1				Year 2				
TASK NAME		TEAM MEMBER	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Task 1. Process Optimization of Carbon Nanoparticle Synthesis		Tian,NETL									
Task 2: Production validation of coal-derived aerogel		Gupta, Tian									
	Subtask 2.1 Preparation of aerogel										
	Subtask 2.2 Drying of coal derived aerogel										
Task 3: Production validation of Coal Derived Aerogel		Hota, Tian, NETL									
Applications in Infrastructure Systems											
	Subtask 3.1 Mass Production										
	Subtask 3.2 Thermo-mechanical Characterization										
	Subtask 3.3 Cost Analyses										

Collaboration Work with NETL

- + NETL's multiple-wavelength Raman or in-situ SEM/TEM
- + Technical/economic communication
- +Technical discussion with Research Team, possibly with industrial partners

Acknowledgements

Bruce Miller (Penn State) and Omer Bakshi (NETL) All UCFER Management

UKy-Center of Applied Energy Research Dr. Kunlei Liu