

Michael Nigra, Bobby Mohanty, Eric Eddings, and Kevin Whitty Wednesday, October 6, 2021

University of Utah Team Overview

Dr. Michael Nigra Dr. Bobby Mohanty Dr. Eric Eddings Co-PI

Co-PI

Dr. Kevin Whitty Co-PI

1 post-doc (part-time) + 2 Ph.D. students

Outline

- Motivation
- Materials design and synthesis
- Reactor testing
- Kinetics and CFD Modeling

Overall goal

 This project develops new structured Fischer-Tropsch catalysts which have <u>improved heat conductivity</u> and <u>higher selectivity</u> for the formation of long chain hydrocarbon products.

Fischer-Tropsch Synthesis (FTS)

- Reaction: $CO + H_2 \longrightarrow C_1 + C_2 + ... + C_{30}$
- Typical catalysts are supported Co and Fe.
- Operates at 10-60 bar and temperatures between 200-350°C
- Highly exothermic reaction: $\Delta H = -165 \text{ kJ/mol CO}$.
- Need strategies to manage heat from reaction!
- Product distribution and catalyst deactivation rate are highly sensitive to temperature.

Critical need and hypothesis

- Critical need: Rapid removal of heat generated by reaction.
- Hypothesis: By designing a support with better heat transfer properties, hotspots can be minimized and deactivation can be slowed.
- **Novelty:** First structured TiO₂ nanotube supported FTS catalyst with controlled acidity.

Expected outcomes

- New FT catalysts that exhibit enhanced thermal conductivity, activity, and selectivity.
- Environmentally-responsible utilization of coal with positive economic impact.

Outline

- Motivation
- Materials design and synthesis
- Reactor testing
- Kinetics and CFD Modeling

New conductive bi-functional catalytic materials

- **Solution:** 3-dimensional structured catalyst with conductive materials (**Ti** or graphite support) with FeCo nanoparticles.
 - FeCo was chosen because it performs better than Fe in H₂ lean feedstocks from coal or biomass.
 - Support will be functionalized with acid groups to perform both hydrocarbon grown and hydrocracking/isomerization processes simultaneously.
 - Two types of supports: **Ti-based** and C-based.

Materials summary

- New materials will consist of structured, bifunctional catalysts for FTS.
- 3-D printing techniques will allow for flexibility in design of catalyst.
- Improved heat transfer by:
 - Using a structured catalyst
 - Using a conductive support material.

Preparation of Ti-based materials

Proposed structure for Ti-based support materials

• Structure is designed to enable heat transfer away from active sites.

Materials synthesis—3D printing model structures

Test printing with PLA polymer before using Ti.

3D-printing with optimized printing parameters

• Example of Ti 3D-printed structured material.

Annealing yields surprise appearance of TiN

- After annealing in Ar, we found that there was titanium nitride in the sample.
- Nitrogen does not appear to be coming from PLA polymer.

Outline

- Motivation
- Materials design and synthesis
- Reactor testing
- Kinetics and CFD Modeling

Reactor set-up

Reactor diameters: 1.77 in. and 0.37 in.

Baseline catalytic testing

- Prepared unstructured catalytic materials supported on P25 TiO₂ and activated carbon.
- Fe and FeCo (1:1 ratio)
 nanoparticles supported on
 TiO₂ or C.
- Full characterization of these materials was completed.

Baseline catalytic testing— Transient temperature profiles

Reaction conditions: pressure: 18 barg, gas flow: 175 SCCM (50 SCCM H2, 25 SCCM CO, 100 SCCM He, temperature set point: 250°C.

Baseline catalytic testing— Catalyst performance

Outline

- Motivation
- Materials design and synthesis
- Reactor testing
- Kinetics and CFD Modeling

Kinetic modeling

Catalysis Today 228 (2014) 32–39

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

CO-insertion mechanism based kinetic model of the Fischer-Tropsch synthesis reaction over Re-promoted Co catalyst

Branislav Todic^a, Wenping Ma^b, Gary Jacobs^b, Burtron H. Davis^b, Dragomir B. Bukur^{a,c,*}

^c Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843, United States

^a Chemical Engineering Program, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar

^b Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, United States

Kinetic modeling—Product formation rate

T = 503 K, P = 1.5 MPa, $H_2/CO = 2.1$, WHSV = 11.3 NL/g_{cat}/h. Calculations from paper

Our calculations based on the paper

Kinetic modeling—Total hydrocarbon formation rate

T = 503 K, P = 1.5 MPa, $H_2/CO = 2.1$, WHSV = 11.3 NL/g_{cat}/h. Calculations from paper

Our calculations based on the paper

Kinetic modeling—1-olefin to paraffin ratio

T = 503 K, P = 1.5 MPa, $H_2/CO = 2.1$, WHSV = 11.3 NL/g_{cat}/h. Calculations from paper

Our calculations based on the paper

Comsol modeling—Temperature profiles

Future work

- Add FeCo and Fe nanoparticles to acid-functionalized TiO₂ nanotube structure and TiN support materials.
- Reaction testing of Ti 3D-printed materials.
- 3D-printing of carbon-based structures.
- Additional kinetic and CFD modeling.

Questions?

NETL - Penn State

University Coalition for Fossil Energy Research

- Thank you to DOE/NETL/UCFER for funding this project!
- Group website: https://nanointerfaces.che.utah.edu

