A Novel Modular Coal-to-Methanol Reactor Using Electroactive Membranes

James R. McKone
University of Pittsburgh
jmckone@pitt.edu
https://mckonelab.pitt.edu
McKone Group: The Pitt Redox Lab

fundamentals	use-inspired basic research
electrochemical science and technology
material synthesis | micro-fabrication | device design

electro-analysis | methods development | cross-disciplinary translation

Redox Flow Batteries

Alkaline electrolysis and fuel cells

Thermo-electrochemical catalysis
Reducing the C-intensity of chemical manufacturing still requires a lot of carbon and hydrogen…

Data from Schiffer and Manthiram *Joule* 2017, 1 (1), 10-14.
Opportunities from renewable (over)supply
Cheap electrons from renewables provide an opportunity to use carbon-rich feedstocks and sequestered CO$_2$ for value-added chemical production.
Hedging our bets...

Electrolytic hydrogen is an attractive alternative to fossil-derived hydrogen

PV/Wind

Surface or desal’ed water

\[e^- \]

Electrolyzer

LP H\(_2\)

H\(_2\) storage & transport

HP H\(_2\)

thermal reactor

low-energy (oxidized) substrate
Hedging our bets...

Electrolytic hydrogen is an attractive alternative to fossil-derived hydrogen

We study this!
Hedging our bets...

Process intensification: radical decrease in process complexity, cost, and/or footprint by replacing several individual process units with one electrochemical reactor

We study this too!
Electrochemically Pumped Membrane Reactor
Linking thermal & electrochemical steps across a charge-conducting membrane

Inspiration: Photosynthetic CO₂ Fixation

1. Light is absorbed in chlorophyll and used to power photosynthesis
2. Enzymes extract electrons and H⁺ ions from water and transport them across the cell membrane
3. A separate set of enzymes uses electrons and H⁺ ions to convert CO₂ into sugars

Vision: a Chemical Industry Based on CO₂ Reuse

1. Renewable electricity is fed to a catalytic assembly that extracts electrons and H⁺ ions from water and injects them into an inorganic membrane
2. A second catalyst uses the electrons and H⁺ ions to convert CO₂ into methanol
3. Methanol can be used to create an array of fuels and commodity chemicals

Also see work by Surendranath, Berlinguette, CoorsTek, and others

image credit: J. McKone & Rick Henkel
Wish list:

1. Inorganic proton-electron conductor, stable under reducing conditions and elevated T
2. Congruent oxide redox reactivity under thermal and electrochemical conditions
3. Low barrier to electrochemical oxide hydrogenation
4. Facile H (reverse) spillover to thermal hydrogenation catalyst
5. Ability to tune reactivity of hydrogen within oxide phase to match reactant
Wish list:
1. Inorganic proton-electron conductor, stable under reducing conditions and elevated T
2. Congruent oxide redox reactivity under thermal and electrochemical conditions
3. Low barrier to electrochemical oxide hydrogenation
4. Facile H (reverse) spillover to thermal hydrogenation catalyst
5. Ability to tune reactivity of hydrogen within oxide phase to match reactant

Transition metal hydrogen bronzes
\[H_xMO_y \]
(M = Ti, V, Mo, etc.)
Wish list:

1. Inorganic proton-electron conductor, stable under reducing conditions and elevated T
2. Congruent oxide redox reactivity under thermal and electrochemical conditions
3. Low barrier to electrochemical oxide hydrogenation
4. Facile H (reverse) spillover to thermal hydrogenation catalyst
5. Ability to tune reactivity of hydrogen within oxide phase to match reactant

Transition metal hydrogen bronzes

\[H_xMO_y \]
(M = Ti, V, Mo, etc.)
H-spillover and H-intercalation
classical pictures imply different pathways

Dynamics of hydrogen uptake and diffusion
Imaging lateral H migration via H_xWO_3 “fronts”
Dynamics of hydrogen uptake and diffusion
Imaging lateral H migration via H_xWO_3 “fronts”
Dynamics of hydrogen uptake and diffusion

H-front migration rates imply single mechanism

Initial migration rate is constant and **way too fast** to be gated by H\(^+\) (or H atom) diffusion!
Dynamics of hydrogen uptake and diffusion

H-front migration rates imply single mechanism

Initial migration rate is constant and **way too fast** to be gated by H⁺ (or H atom) diffusion!
Wish list:
1. Inorganic proton-electron conductor, stable under reducing conditions and elevated T
2. Congruent oxide redox reactivity under thermal and electrochemical conditions
3. Low barrier to electrochemical oxide hydrogenation
4. Facile H (reverse) spillover to thermal hydrogenation catalyst
5. **Ability to tune reactivity of hydrogen within oxide phase to match reactant**

Transition metal hydrogen bronzes
\[\text{H}_x \text{MO}_y \]
(M = Ti, V, Mo, etc.)
Using quantum chemistry to predict bronze PCET thermochemistry

Regression models: trained on DFT-predicted acid/base properties on subset of H-locations in H_xWO_3
Using quantum chemistry to predict bronze PCET thermochemistry

Regression models: trained on DFT-predicted acid/base properties on subset of H-locations in H_xWO_3

Oxygens are basic

Metals are acidic

Correlation coefficients for DFT-predicted energy (related to E^o) vs DFT-predicted acid/base properties
Using quantum chemistry to predict bronze PCET thermochemistry

DFT + regression models: greatly decrease computational cost for convex hull calculations

Important feature of H_xWO_3: fast reduction but severely inhibited oxidation

Collab w/ G. Mpourmpakis
Using quantum chemistry to predict bronze PCET thermochemistry

Model is highly extensible: input requires only reactant oxide crystal structure
Chemical Looping Hydrogenation

Electrochemical properties of H_xWO_3 allow us to predict how it will behave in a looping configuration.

Model reaction: acetylene hydrogenation
Chemical Looping Hydrogenation
Electrochemical properties of H_xWO_3 allow us to predict how it will behave in a looping configuration

Cyclic voltammogram

- CAN hydrogenate
- CANNOT hydrogenate

DFT calculations

Both results suggest that H_xWO_3 will hydrogenate C_2H_2 and $H_xV_2O_5$ will not
Chemical Looping Hydrogenation

Predictions validated: HxWO3 hydrogenates acetylene and HxV2O5 does not

WO₃

- **C₂H₂ conversion**
- **C₂H₄ selectivity**
- **C₂H₆ selectivity**
- **C balance**

V₂O₅

- **C₂H₂ conversion**
- **C₂H₄ selectivity**
- **C₂H₆ selectivity**
- **C balance**

ALSO: note product distribution – ethylene is primary C2 product
Chemical Looping Hydrogenation
Predictions validated: HxWO3 hydrogenates acetylene and HxV2O5 does not

ALSO: note product distribution – ethylene is primary C2 product
Electrochemically pumped syngas-methanol

Applied voltage to increase chemical potential of hydrogen

(a) H_2 activation via H-spillover

CO, H$_2$, CO$_2$, H$_2$O \rightarrow H$_*$$\rightarrow$ CH$_3$OH, H$_2$O

(b) CO hydrogenation using solid-state H

H_xWO_3
Electrochemically pumped syngas-methanol

Applied voltage to increase chemical potential of hydrogen

(a) H₂ activation via H-spillover

CO, H₂, CO₂, H₂O → H₂

CH₃OH, H₂O → CO, CO₂, H₂O

(b) CO hydrogenation using solid-state H

HₓWO₃

Open Circuit Potential of CO₂ - N₂ and CO₂ - H₂ Cells

Potential (V vs ref)

Time (s)
Final thought: electrochemical intensification

Are there circumstances under which heat and electricity together can enhance catalytic reactivity more than either can individually?
Grad Students
Tejal Sawant
Rituja Patil
Yifan Deng
Eli Bostian
Evan Miu
Qiudi Meng
Aayush Mantri
Sammie Roenigk
Becca Segel

Undergraduates
Jeremy Hafner
Jonathan Hightower
Shawnee Sparrow
Dean Miller
James Hughes
Craig Thomas
Emily Siegel
Julia McKay
Gabrielle Davis
Jeff Hoffmann
Xavier Strittmatter
Rebecca Habeger
Margaret Orr
Thomas Henry
Carissa Yim
Ryan Earle
Natalie Britton
Jared Coffelt
Todd Ackerman

Collaborators
Yanni Bourmpakis (Pitt)
Götz Veser (Pitt)
Judy Yang (Pitt)
Stephen House (Pitt)
Susan Fullerton (Pitt)
Venkat Viswanathan (CMU)
Ellen Matson (UR)
Tim Cook (UB)

Financial Support
University of Pittsburgh
US Department of Energy (UCFER S000652)
Arnold and Mabel Beckman Foundation
Oak Ridge Associated Universities
National Science Foundation (CBET 2015859)