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Reducing the C-intensity of chemical manufacturing
still requires a lot of carbon and hydrogen…
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Opportunities from renewable (over)supply
Cheap electrons from renewables provide an opportunity to use carbon-rich 

feedstocks and sequestered CO2 for value-added chemical production
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Hedging our bets…
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Hedging our bets…
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Process intensification: radical decrease in process complexity, cost, and/or footprint 

by replacing several individual process units with one electrochemical reactor

We study this too!
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image credit: J. McKone & Rick Henkel

Electrochemically Pumped Membrane Reactor 
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Linking thermal & electrochemical steps across a charge-conducting membrane

Also see work by Surendranath, Berlinguette, CoorsTek, and others



Wish list:
1. Inorganic proton-electron conductor, stable 

under reducing conditions and elevated T

2. Congruent oxide redox reactivity under 

thermal and electrochemical conditions

3. Low barrier to electrochemical oxide 

hydrogenation

4. Facile H (reverse) spillover to thermal 

hydrogenation catalyst

5. Ability to tune reactivity of hydrogen within 

oxide phase to match reactant

image credit: J. McKone & Rick Henkel
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Transition metal hydrogen bronzes

HxMOY
(M = Ti, V, Mo, etc.)
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Transition metal hydrogen bronzes

HxMOY
(M = Ti, V, Mo, etc.)
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H-spillover and H-intercalation
classical pictures imply different pathways

Adapted from: Conner, W. C.; Falconer, J. L. Chem. Rev. 1995, 95 (3), 759–788.
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Dynamics of hydrogen uptake and diffusion
Imaging lateral H migration via HxWO3 “fronts”

6x speed
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Dynamics of hydrogen uptake and diffusion
Imaging lateral H migration via HxWO3 “fronts”
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Dynamics of hydrogen uptake and diffusion
H-front migration rates imply single mechanism

Initial migration rate is constant and way too fast

to be gated by H+ (or H atom) diffusion!
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Wish list:
1. Inorganic proton-electron conductor, stable 

under reducing conditions and elevated T

2. Congruent oxide redox reactivity under 
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Transition metal hydrogen bronzes

HxMOY
(M = Ti, V, Mo, etc.)
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Using quantum chemistry
to predict bronze PCET thermochemistry

Regression models: trained on DFT-

predicted acid/base properties on 

subset of H-locations in HxWO3

Collab w/ G. 

Mpourmpakis
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Regression models: trained on DFT-

predicted acid/base properties on 

subset of H-locations in HxWO3

Correlation coefficients for DFT-

predicted energy (related to E°) vs 

DFT-predicted acid/base 

properties

Collab w/ G. 

Mpourmpakis

Using quantum chemistry
to predict bronze PCET thermochemistry
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DFT + regression models: greatly decrease computational cost for convex hull calculations

Important feature of HxWO3: fast reduction but severely inhibited oxidation

Using quantum chemistry
to predict bronze PCET thermochemistry

Collab w/ G. 

Mpourmpakis
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With G. 

Mpourmpakis

Using quantum chemistry
to predict bronze PCET thermochemistry

Model is highly extensible: input requires only reactant oxide crystal structure
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With 

G. Veser

Model reaction: acetylene hydrogenation

H2 
intercalation

substrate 
hydrogen-

ation

MOy

HxMOy

H2 + He

He C2H2

C2H4

C2H6

Chemical Looping Hydrogenation
Electrochemical properties of HxWO3 allow us to predict 
how it will behave in a looping configuration
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Cyclic voltammogram DFT calculations

Both results suggest that HxWO3 will hydrogenate C2H2 and HxV2O5 will not

Chemical Looping Hydrogenation
Electrochemical properties of HxWO3 allow us to predict 
how it will behave in a looping configuration

With 

G. Veser
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Chemical Looping Hydrogenation
Predictions validated: HxWO3 hydrogenates acetylene and 
HxV2O5 does not

With 

G. Veser
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ALSO: note product distribution – ethylene is primary C2 product

Chemical Looping Hydrogenation
Predictions validated: HxWO3 hydrogenates acetylene and 
HxV2O5 does not
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Electrochemically pumped syngas-methanol
Applied voltage to increase chemical potential of hydrogen
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Electrochemically pumped syngas-methanol
Applied voltage to increase chemical potential of hydrogen
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Final thought: electrochemical intensification
Are there circumstances under which heat and electricity together can enhance 
catalytic reactivity more than either can individually?



29

Tejal Sawant

Rituja Patil

Yifan Deng

Eli Bostian

Evan Miu

Qiudi Meng

Aayush Mantri

Sammie Roenigk

Becca Segel

Jeremy Hafner

Jonathan Hightower

Shawnee Sparrow

Dean Miller

James Hughes

Craig Thomas

Emily Siegel

Julia McKay

Gabrielle Davis

Jeff Hoffmann

Xavier Strittmatter

Rebecca Habeger

Margaret Orr

Thomas Henry

Carissa Yim

Ryan Earle

Natalie Britton

Jared Coffelt

Todd Ackerman

Undergraduates Collaborators

Yanni Bourmpakis (Pitt)

Götz Veser (Pitt)

Judy Yang (Pitt)

Stephen House (Pitt)

Susan Fullerton (Pitt)

Venkat Viswanathan (CMU)

Ellen Matson (UR)

Tim Cook (UB)

Grad Students

University of Pittsburgh

US Department of Energy (UCFER S000652)

Arnold and Mabel Beckman Foundation

Oak Ridge Associated Universities

National Science Foundation (CBET 2015859)

Financial Support


