A Novel Modular Coal-to-Methanol Reactor Using Electroactive Membranes

James R. McKone University of Pittsburgh jmckone@pitt.edu https://mckonelab.pitt.edu

McKone Group: The Pitt Redox Lab

Alkaline electrolysis and fuel cells

Thermo-electrochemical catalysis

Reducing the C-intensity of chemical manufacturing still requires a lot of carbon and hydrogen...

Data from Schiffer and Manthiram Joule 2017, 1 (1), 10-14.

Opportunities from renewable (over)supply

Cheap electrons from renewables provide an opportunity to use carbon-rich feedstocks and sequestered CO₂ for value-added chemical production

Year of Operation - Assuming 16% Cumulative Annual Growth Rate of Solar

Hedging our bets...

Electrolytic hydrogen is an attractive alternative to fossil-derived hydrogen

Hedging our bets...

Electrolytic hydrogen is an attractive alternative to fossil-derived hydrogen

Hedging our bets...

Process intensification: radical decrease in process complexity, cost, and/or footprint by replacing several individual process units with one electrochemical reactor

Electrochemically Pumped Membrane Reactor

Linking thermal & electrochemical steps across a charge-conducting membrane

Also see work by Surendranath, Berlinguette, CoorsTek, and others

8

image credit: J. McKone & Rick Henkel

- 1. Inorganic proton-electron conductor, stable under reducing conditions and elevated T
- 2. Congruent oxide redox reactivity under thermal and electrochemical conditions
- 3. Low barrier to electrochemical oxide hydrogenation
- 4. Facile H (reverse) spillover to thermal hydrogenation catalyst
- 5. Ability to tune reactivity of hydrogen within oxide phase to match reactant

- 1. Inorganic proton-electron conductor, stable under reducing conditions and elevated T
- 2. Congruent oxide redox reactivity under thermal and electrochemical conditions
- 3. Low barrier to electrochemical oxide hydrogenation
- 4. Facile H (reverse) spillover to thermal hydrogenation catalyst
- 5. Ability to tune reactivity of hydrogen within oxide phase to match reactant

Transition metal hydrogen bronzes $H_{x}MO_{Y}$ (M = Ti, V, Mo, etc.)

- 1. Inorganic proton-electron conductor, stable under reducing conditions and elevated T
- 2. <u>Congruent oxide redox reactivity under</u> thermal and electrochemical conditions
- 3. Low barrier to electrochemical oxide hydrogenation
- 4. Facile H (reverse) spillover to thermal hydrogenation catalyst
- 5. Ability to tune reactivity of hydrogen within oxide phase to match reactant

Transition metal hydrogen bronzes $H_{x}MO_{Y}$ (M = Ti, V, Mo, etc.)

H-spillover and H-intercalation

classical pictures imply different pathways

Adapted from: Conner, W. C.; Falconer, J. L. Chem. Rev. 1995, 95 (3), 759–788.

Dynamics of hydrogen uptake and diffusion Imaging lateral H migration via H_xWO₃ "fronts"

Dynamics of hydrogen uptake and diffusion Imaging lateral H migration via H_xWO₃ "fronts"

Dynamics of hydrogen uptake and diffusion H-front migration rates imply single mechanism

Initial migration rate is constant and *way too fast* to be gated by H⁺ (or H atom) diffusion!

University of

<u>Pittsburgh</u>

Dynamics of hydrogen uptake and diffusion H-front migration rates imply single mechanism

Initial migration rate is constant and *way too fast* to be gated by H⁺ (or H atom) diffusion!

University of

Pittsburgh

- 1. Inorganic proton-electron conductor, stable under reducing conditions and elevated T
- 2. Congruent oxide redox reactivity under thermal and electrochemical conditions
- 3. Low barrier to electrochemical oxide hydrogenation
- 4. Facile H (reverse) spillover to thermal hydrogenation catalyst
- 5. <u>Ability to tune reactivity of hydrogen</u> within oxide phase to match reactant

Transition metal hydrogen bronzes $H_{x}MO_{Y}$ (M = Ti, V, Mo, etc.)

Using quantum chemistry to predict bronze PCET thermochemistry

Collab w/ G. Mpourmpakis

Metals are acidic

Regression models: trained on DFTpredicted acid/base properties on subset of H-locations in H_xWO_3

Using quantum chemistry to predict bronze PCET thermochemistry

Collab w/ G. Mpourmpakis

Correlation coefficients for DFTpredicted energy (related to E°) vs DFT-predicted acid/base properties 19

Regression models: trained on DFTpredicted acid/base properties on subset of H-locations in H_xWO_3

Energy [eV]

-5

DFT + regression models: greatly decrease computational cost for convex hull calculations **Important feature of H_xWO_3:** fast reduction but severely inhibited oxidation

Model is highly extensible: input requires only reactant oxide crystal structure

Model reaction: acetylene hydrogenation

Chemical Looping Hydrogenation Electrochemical properties of H_xWO_3 allow us to predict how it will behave in a looping configuration

With G. Veser

Cyclic voltammogram DFT calculations CAN hydrogenate Current Density [mA/cm²] CAN hydrogenate CANNOT CANNOT hydrogenate hydrogenate 0.5 1.0 1.5 2.0 -0.50.0 0.5 1.0 1.5 -0.50.0 Potential [V vs. RHE] Equilibrium Potential [V vs. RHE] \times WO₃/H_{0.125}WO₃ Equilibrium H_xWO_3 $---- C_2 H_2 / C_2 H_4$ ---- C_2H_2/C_2H_4 ---- $H_xV_2O_5$ — C_2H_2/C_2H_6 V₂O₅/H_{0.125}WO₃ Equilibrium $-C_2H_2/C_2H_6$

Both results suggest that H_xWO_3 will hydrogenate C_2H_2 and $H_xV_2O_5$ will not

Chemical Looping Hydrogenation

Predictions validated: HxWO3 hydrogenates acetylene and HxV2O5 does not

ALSO: note product distribution – ethylene is primary C2 product

University of Pittsburgh

24

With

G. Veser

Chemical Looping Hydrogenation

Predictions validated: HxWO3 hydrogenates acetylene and HxV2O5 does not

ALSO: note product distribution – ethylene is primary C2 product

Electrochemically pumped syngas-methanol

Applied voltage to increase chemical potential of hydrogen

26

Cu/C

Nafion membrane

Pd/C

Electrochemically pumped syngas-methanol

Applied voltage to increase chemical potential of hydrogen

Final thought: electrochemical intensification

Are there circumstances under which heat and electricity together can enhance catalytic reactivity more than either can individually?

Temperature

Grad Students

Tejal Sawant Rituja Patil **Yifan Deng** Eli Bostian **Evan Miu** Qiudi Meng Aayush Mantri Sammie Roenigk Becca Segel

Undergraduates

Jeremy Hafner Jonathan Hightower Shawnee Sparrow Dean Miller James Hughes Craig Thomas Emily Siegel Julia McKay Gabrielle Davis Jeff Hoffmann Xavier Strittmatter Rebecca Habeger Margaret Orr Thomas Henry Carissa Yim Ryan Earle Natalie Britton Jared Coffelt Todd Ackerman

Collaborators

Yanni Bourmpakis (Pitt) Götz Veser (Pitt) Judy Yang (Pitt) Stephen House (Pitt) Susan Fullerton (Pitt) Venkat Viswanathan (CMU) Ellen Matson (UR) Tim Cook (UB)

Financial Support

University of Pittsburgh US Department of Energy (UCFER S000652) Arnold and Mabel Beckman Foundation Oak Ridge Associated Universities National Science Foundation (CBET 2015859)

