Development of Novel Process Intensification Device, Acoustic Driven Packing Material

Award Number **DE-FE0026825**

University Coalition for Fossil Energy Research

Bradley Irvin, Kunlei Liu 05Oct21

University of Kentucky Center for Applied Energy Research Lexington, KY http://www.caer.uky.edu/powergen/home.shtml

What is Packing Material?

- Packing material provides additional surface area for reactions, such as, mass transfer to occur.
- > Most packing materials are composed of dense corrugated sheets of metal.
- Research and development into advanced packing materials seek to increase available surface area, improve liquid/gas distribution, and reduce capital costs while minimizing pressure drop.

Mechanism

A propagating surface wave in a liquid film will increase the film's surface area and localized gas-liquid mixing increasing absorption rate.

- Acoustic Streaming: Flow in a fluid driven by the absorption of high amplitude acoustic oscillations.
- Micro Turbulence: A form of turbulence that varies over distances on the micrometer scale.
- Acoustic amplitude: Observed to be positively correlated with an increase in solvent absorption rate

Proof-of-Application

Testing the effects of sonication on CO₂ removal in a bench scale counter current absorption column

Results

> 21-25% absorption increase with particle additive.

The Path Forward

Sonication Bath

Research Goals

Solve resonance issue with the use of an advanced acoustic generator provided by MPI Ultrasonic.

What effects resonance frequency?

LoadShape Operation Reflected Waves Reactive Load

Design and construct a column that can accommodate and optimize the acoustic driven packing material

Test the performance of the column on UK CAER's 30 L/min CO₂ capture bench unit at known optimal conditions.

Compare the performance of the column at different acoustic amplitudes with baseline experiments.

Effectiveness of fine solids additive

Multiple Solvents Tested

Investigate energy consumption and scalability.

UK CAER's 30 L/min CO2 Capture Bench Unit

- 3" diameter absorber column with attach stripping unit
- Latest NI controls management system
- Pressurized stripping unit
- Bottled CO₂ and house nitrogen

Multiple acoustic amplitudes will be used for each test

Test with 30 wt% MEA Test with 30 wt% MEA + fine solids Test with Uky-CAER Solvent Test with Uky-CAER Solvent + fine solids

Location of Acoustic Driven Packing Material

Wire Design

1. Only 1 Transducer 2. Acoustics is isolated to the packing

Con's

1. 0.5" Air Gap 2. Poor Acoustic Efficiency

Concerns

Eigenfrequency=20057 Hz

1. Weight Load?

👯 Center for Applied Energy Research

Tube design

Pro's

Great acoustic coverage
No air gap

Con's

- 1. Vibrates entire column
- 2. Many transducers

Concerns

1. Power consumption

Acoustic Simulation: Hybrid Design

freq(1)=19912 Hz

Surface: Total displacement (mm)

Cost Reduction

A 30% mass transfer enhancement can reduce absorber costs by up to 26%

Thank You

UCFER and Penn State Team Bruce Miller

> <u>DOE, NETL</u> Dustin Brown Benjamin Omell

<u>UK CAER</u> Kunlei Liu Roger Perrone Parker Estep Lisa Richburg

MPI Ultrasonics

Thank you