2021 Virtual Annual UCFER Review Meeting

Crosslinked Microspherical Adsorbents from Lignitederived Humic Acid for CO₂ Capture

Project No. 06-UND-Z1-13 Award No. DE-FE0026825/S001343-USDOE

PI: Xiaodong Hou (Institute for Energy Studies) PD: Daniel Laudal (Institute for Energy Studies) Co-PI: Junior Nasah (Institute for Energy Studies) NETL collaborator: Dr. James Hoffman Project Manager: Dr. Carl Laird 10.05.2021

UND^{U N I V E R S I T Y O F **NORTH DAKOTA**}

Institute for Energy Studies (IES)

- Found in 2009
- One of eight units under CEM
- Mission: Energy Research-Education-Outreach
- Personnel (>25): Faculty, Engineers, and students
- Strong Industrial Collaboration
- Facilities
 - o Materials Characterization Lab (MCL)
 - <u>Bench and Pilot Facilities</u>
 - o Modeling and Simulation
- Degree Program
 - o Energy Engineering Ph.D.
 - Energy Systems Engineering M.S. or M.Eng.

- Use of fossil fuels in a carbon constrained environment / carbon management:
 - Capture of CO₂ using sorbent materials
 - Novel combustion technologies
 - New products from coal

Recovery of valuable/critical materials:

- Recovery of <u>rare earth elements</u> from coal and coal byproducts
- Recovery of lithium, nickel and other valuable materials from oil field process waters
- Rare earth value chain including recovering other critical materials
- Co-producing graphene and rare earth elements from Leonardite and lignite
- Building a renewable energy portfolio moving beyond fossil fuel:
 - Li-ion batteries (cathode/Anode material development, battery management systems)
 - Developing and integrating energy storage devices into the grid – chemical (battery); thermochemical (CLC), and others
 - Energy policy using system dynamic analysis
 - o Geothermal energy development

Background-Post Combustion CO₂ Capture

	Examples	TRL	Advantages	Disadvantages
Absorbent (chemical)	Monoethanola mine (MEA) K ₂ CO ₃	9	The classic and most applicable approach in power plant	High regeneration energy and hazardous byproducts
Adsorbent (physical)	MOF, zeolites, activated carbon, carbon nanomaterials	7	Fit to power plant Cover wide T-P range Suitable for DAC Environmentally friendly	High regeneration energy
Membrane	Polymer, Dense inorganic	3-6	Cost-effective, flexible and reliable	maximize gas permeance & selectivity

Goal & Objectives

Goal: develop a new low-cost, multi-functional and environmentally friendly sorbent for CO_2 capture

Attributes	Target
Adsorption capacity	>2mmol of CO ₂ /g
Half-time of sorption	<30min
Selectivity of CO_2/N_2	>50
Cyclic CO ₂ capacity loss@100 th cycle	<10%
Adsorbent mass loss@100 th cycle	<5%
Adsorbent purchase cost	<\$5/kg
Adsorbent OPEX	<\$20/kg

Proposed Technology

Scope of Work

□ Task 1. Extraction of HA from Lignite (Xiaodong)

• Established alkaline-based procedure

Task 2. Synthesis and characterization of HA microspheres (Xiaodong, NETL)

• Key performance metrics – diameter, specific surface area, K₂CO₃ and PEI loading

Task 3. Preparation of porous HA microspheres via activation (Xiaodong, NETL)

• Key performance metrics — PEI loading, specific surface area, and porosity, and pore

size distribution will be evaluated as a function of temperature and pre-added K_2CO_3

Scope of Work

□ Task 4. Static test of CO₂ adsorption capacity (Junior, Hannes)

 Key performance metrics: adsorption capacity, amine efficiency, sorption halftime, and selectivity of CO₂, will be evaluated as a function of temperature and humidity /moisture

Task 5. System design and dynamic test (Junior, Hannes, NETL)

- The best formulation from Tasks 1 to 4 will be performed for testing in a lab-scale continuous system
- \circ The adsorption-desorption cycling performance (>100 cycles), including the CO₂ adsorption capacity retention and adsorbent mass loss will be evaluated

Task 6. Techno-economic analysis (TEA) of Process (Junior, Hannes)

• Include direct comparison with the benchmark technologies

Timelines and Milestones

No	Feb	Mar	Apr	May	Jun	Jul	Aug	gSep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
110.	21	21	21	21	21	21	21	21	21	21	21	22	22	22	22	22	22	22	22	22	22	22	22	23
Task 1																								
Task 2																								
Task 3																								
Task 4																								
Task 5																								
Task 6																								

		Planned
No.	Description	Date
1	Completion of the refinement of HA extraction procedure	08/31/21
2	Determination of an optimized HA spray drying process	10/30/21
3	Completion of the optimization of microspheres activation process	01/30/22
4	Completion of the CO ₂ adsorption capacity static tests and determination of the optimal porous HA microspheres synthetical procedure	06/30/22
5	Completion of the dynamic test on a lab-scale system and cyclic performance evaluation	10/30/22
6	Completion of the TEA and submission of the final project report	01/31/23

Preliminary Results (Pre-Award)

Adsorbent composition:

52% HA 26% K₂CO₃ 23% branched PEI(Mw1200)

• Task 1. Extraction of HA from Lignite

Optimize the major factors of the previous extraction procedure from Leonardite

Task 1. Extraction of HA from Lignite
<u>Run Total 18 tests to refine the</u>
secondary factors aimed for high yield
1) Reduce particles size (not significant)
2) Liquid: solid ratio (not significant)
3) stirring rate (not significant)
4) Adding KOH/NaOH (gelatinization)
5) Different lignite Coal sources !

Test	Results
Leonardite	Yield =47%
KOH/NaOH	Gelatinized
Lignite (high ash >50%)	Yield <10%
Lignite (low ash <20%)	Yield= 38.6%

• Task 2. Synthesis and characterization of HA microspheres

We completed 16 experiments on the synthesis, the characterization is ongoing

[K2CO3]	PEI percent	SD pump speed	SD temperature	CO2 uptake %	Yield	BET	Cost
0.1	0	15	175				
0.1	20	25	195				
0.1	30	35	215				
0.1	50	45	235				
0.2	0	25	215				
0.2	20	15	235				
0.2	30	45	175				
0.2	50	35	195				
0.3	0	35	235				
0.3	20	45	215				
0.3	30	15	195				
0.3	50	25	175				
0.4	0	45	195				
0.4	20	35	175				
0.4	30	25	235				
0.4	50	15	215				

• Task 2. Synthesis and characterization of HA microspheres

DoE test 1 0%PEI

• Task 2. Synthesis and characterization of HA microspheres

DoE test 5: [K2CO3]=0.2M

T=235°C

DoE test 9: [K2CO3]=0.3M

T=215°C

- Task 4. Static test of CO₂ adsorption capacity
 - Linseis TGA: moisture generator but requires major maintenance to correct the baseline measurement issue.
 - We switched to repaired SDT Q 600 TA instrument and ran couple of tests using a

house-made humidifier

<u>CO₂ humidifier</u> UND ^UN I V E R S I T Y O F NORTH DAKOTA

• Task 4. Static test of CO₂ adsorption capacity

Figure 1: Adsorption process of humid CO2, DoE test 1 preparation conditions: $[K_2CO_3]=0.1M$, PEI=0%, spray dry conditions (DoE table).

Figure 3: Effect of moisture on CO₂ uptake

Bench-Scale CO₂ Test System

Schematic (left) and picture (right) of existing bubbling bed test system at UND

Collaboration with NETL via Dr. James Hoffman (MEM/ECE)

Regular meetings: kick-off, monthly, annual UCFER review meeting

- Possibility materials characterization support
- Possibility of advising students

University of North Dakota (06-UND-Z1-13)

NETL RIC POC: James Hoffman TDIC Task Monitor: Carl Laird CRADA: TBD Relevant NETL Core Competency: MEM/ECE

NETL Resources to Support Collaboration:

• Consultation/meetings/advisory role up to 0.05 FTE. Possibility of materials characterization support at the discretion of NETL which will be determined during the execution phase of the project. Possibility of co-advising students and/or student exchange which will be determined during the execution phase.

Summary and Next Plan

- In Task 1, the optimization of the HA extraction procedure is completed. A good yield (38.6%) was achieved with the optimal procedure.
- In Task 2, a total of sixteen HA microsphere samples were prepared. The characterization and testing are ongoing. We may further optimize the adsorbent properties such as morphology, size and size distribution, and porosity.
- In Task 3, we will start preparing the porous HA microspheres adsorbent via activation.
- In Task 4, we will continue to optimize the CO₂ adsorption-desorption testing procedure and complete the testing of the sixteen samples, and samples produced in Task 3.
- Task 5 System design and dynamic test
- Task 6 Techno-economic analysis of process

Acknowledgement

Sponsors

- o DOE UCFER program
- o NACoal

Collaborators

- Dr. James Hoffman (NETL)
- o Dr. Carl Laird (NETL)
- Dr. Gerard Goven (NACoal)

Students

- o Bellal Abdelmalek
- Xi Zhang

Questions?

