2021 Virtual Annual UCFER Review Meeting

Porous Silicon/Lignite-Derived Graphene Composite Anodes for Lithium-Ion Batteries

Project No. 04-UND-P2-15: Coal Beneficiation Award No. DE-FE0026825/S000045-USDOE

PI: Xiaodong Hou (Institute for Energy Studies) PD: Michael Mann (College of Engineering and Mines) Co-PI: Julia Zhao (Chemistry Department) Co-PI: Yong Hou (Clean Republic LLC) NETL collaborator: Christopher Matranga (NETL) Project Manager: Omer Bakshi (NETL) 10.05.2021 UNIVERSITYOF

Institute for Energy Studies (IES)

- Found in 2009
- One of eight units under CEM
- Mission: Energy Research-Education-Outreach
- Personnel (>25): Faculty, Engineers, and students
- Strong Industrial Collaboration
- Facilities
 - o Materials Characterization Lab (MCL)
 - o Bench and Pilot Facilities
 - o Modeling and Simulation
- Degree Program
 - Energy Engineering Ph.D.
 - Energy Systems Engineering M.S. or M.Eng.

- Use of fossil fuels in a carbon constrained environment / carbon management:
 - Capture of CO₂ using sorbent materials
 - o Novel combustion technologies
 - New products from coal

Recovery of valuable/critical materials:

- Recovery of <u>rare earth elements</u> from coal and coal byproducts
- Recovery of lithium, nickel and other valuable materials from oil field process waters
- Rare earth value chain including recovering other critical materials
- Co-producing graphene and rare earth elements from Leonardite and lignite
- Building a renewable energy portfolio moving beyond fossil fuel:
 - Li-ion batteries (cathode/Anode material development, battery management systems)
 - Developing and integrating energy storage devices into the grid – chemical (battery); thermochemical (CLC), and others
 - Energy policy using system dynamic analysis
 - o Geothermal energy development

Lithium-Ion Battery (LIB)

OF

State of Problem: Graphite VS Si/Graphene Composite Anode

	Graphite	Si	SiO
Capacity	372 mAh/g	3600-4200 mAh/g	2600-3172 mAh/g
Cycle life (80% Retention)	>1000	<300	>500
Mechanism	Li + 6C = LiC ₆	15Li + 4Si = Li ₁₅ Si ₄ 22Li + 5Si = Li ₂₂ Si ₅	(17+x)Li + 5SiO = Li ₁₅ Si ₄ + Li ₂ O + Li _x SiO ₄
Cost	\$10-15/kg	≥\$65/kg	~\$20-30/kg
Key Issues	Poor low-T performance & rate capability	Low conductivity, >300% volume change	Low conductivity, 100% volume change

Mater. Chem. Front., 2017,1, 1691-1708

Solutions for Volume Change:

- 1) Nano-Si
- 2) Si-M alloy
- 3) <u>Porous Si</u>
- 4) <u>SiO</u>

Solutions for Low Conductivity:

Conductive coating: (Carbon, MO_x, <u>Graphene</u>)

A Challenge: Mass Production of Graphene

Lignite or Leonardite

North Dakota has the best leonardite in the world (up to 86% humic acid dry and ash-free basis) !!

Powell, C. et al., Curr. Opin. Colloid Interface Sci. 2015, 20, 362.

Hummers, W. S. et al, *JACS* **1958**, *80*, 1339.

Price in 2020:

Graphene

\$100/kg
(low quality)
>\$500/4" disk
(high quality)

Graphite \$1000-2000/t

Leonardite \$220/t

Lignite \$22/t

Project Goal and Objectives

Battery Performance Objectives:

Performance Attribute	Performance Requirement	Reference Materials (S450-2A)
1 st -cycle Specific Capacity (mAh/g)	1000	450
ICE (Initial Columbic Efficiency)	>80	80
Cycling Life (with 85% of capacity retention)	300	200
Cost (\$/kg)	20	20-30

Our Approach to Synthesize Si/G Anode

Micro-sized Porous Si vs Si Nanoparticles In-situ synthesis of graphene vs Commercial graphene

Plan of Work

A six month no-cost extension to October 30, 2021

Collaboration

Task 1, 2 and 5: Dr. Christopher Matranga at NETL, Materials characterization (Raman and XPS)

Task 2: Dr. Julia Zhao at UND chemistry department, Silica synthesis

Task 4: Dr. Yong Hou at Clean Republic LLC , battery performance test

Task 1. Extraction of HA from lignite

- Established an optimal extraction
 & purification procedure at both
 lab-scale and bench-scale
- Produced a total 8 kg of crude humic acid (dry basis) at one batch
- Produced multiple batches of ~0.5 kg of high purity (>97%) of humic acid for bench-scale test in the Task 5

Composition (dry basis %)	Raw Lignite	Crude HA	Purified HA at Lab-scale	Purified HA at Pilot-scale
Na		8.59		0.55
Mg	0.27	0.04		
Al	1.93	0.19	0.20	0.25
Si	3.89	0.17	0.26	0.38
S	1.08	1.47	1.66	1.62
Cl	0.01	6.79	0.02	0.01
К	0.17	0.04	0.03	0.04
Са	0.64	0.12	0.02	0.06
Fe	1.77	1.81	0.14	0.15
Ва	0.19	-		
Ash Content	<mark>15.87</mark>	15.58	2.46	3.22
Organic Matter	<mark>84.13</mark>	84.42	<mark>97.54</mark>	<mark>96.78</mark>
Yield (%)			28.9	26.6

XRF Analysis Results

Task 2. Synthesis and Characterization of pSi via MR (Route A) (with Dr. Julia Zhao's group)

- Stöber method: solid spheres at a higher yield
- Microemulsion: desired porous spheres though at a lower yield
- A series of Silica particle with size from 100-1000 nm prepared by Microemulsion

Stöber

Microemulsion

Yield 88%

Yield 44%

Task 3: Synthesis and Characterization of pSi/G

Route A (SiO₂):

- A-1: MR reaction and then mixing with HA
- A-2: mixing with HA and then MR reaction

Route B (SiO) :

- Optimized three major factors: particles size, humic acid feeding ratio, calcination temperature
- Optimized two minor factors: Humic acid purity and Electrode fabrication: binder & conductor

Characterization of pSi/G by Route A-1 (SiO₂)

- The SiO₂ precursor has particle size of 500 nm.
- After MR and acid etching, porous silicon pSi particles forms, and the spherical shape maintains
- After mixing with HA and calcination, secondary particle sizes ranging from 1-5 μm. The shape become less spherical but basically round-shape remains.

Characterization of pSi/G by Route A-1 (SiO₂)

EDX Si and C mapping

XRD

- An even carbon coating on the surface of Si particles
- Amorphous SiO₂ converted to high crystalline porous Si and final pSi@G anode

Characterization of pSi/G by Route A-2 (SiO₂)

 $mSiO_2@G$ composite After mixing with Humic acid and heat treatment

mpSi@G particles After MR reaction and acid etching

Characterization of pSi/G by Route A-2 (SiO₂)

Characterization of D-SiO/G by Route B (SiO)

- XRD pattern (a): Conversation of humic acid-tographene and disproportionation of SiO occur simultaneously
- **Raman spectrum (b):** characteristics of crystalline Si and graphene (G Band) were observed
- TEM image (c): Thickness of coating ~5 nm (15 layers of graphene)

(with Dr. Christopher Matranga @NETL)

Task 4: Electrochemical Performance testing of the pSi/G anodes

- CR2032 Coin-type half cells made of pSi/G anodes were assembled
- Coin cell cap Washer Spacer Lithium Separator Gasket Electrolyte Electrode Coin cell cap

- Key Metrics
 - Specific capacity
 - ICE (initial coulombic efficiency)
 - Cycling performance

Battery Performance Comparison

Batch	Initial Capacity	ICE	Capacity retention 85%
Route A-1	2200	57.2%	100
Route A-2	3094	71.3%	40
Route B	1796	79.3%	500

Route B (SiO): the winner!

Cycle number

- 0

OF

Impact of Particle Size on Battery Performance

- 11 μm sample has very low ICE and capacity and poor cycling performance because of the poor conductivity
- 5 μm has the best overall battery performance

Impact of Humic Acid Feeding Ratio on Battery Performance

- **Graph (a)**: compared with pristine SiO (0.0%C), a graphene coating can significantly improve the ICE and capacity.
- **Graph (b):** the residual carbon in anodes is proportional to humic acid feeding. About 50% humic acid becomes carbon.
- Graph (c): the 12.9% C sample (20% humic acid) has the best cycling life.

Impact of Calcination Temperature on Battery Performance

- **Graph (a):** higher T and longer time lead to higher ICE but slightly decreased capacity
- **Graph (b):** XRD shows higher T and longer time promoted the disproportionation reaction
- Graph (c): the sample at 1000°C for 8h has the best cycling performance.

Impact of Humic acid Purity on Battery Performance

- The low ash sample has slightly better battery performance
- The overall impact of humic impact in the testing range (Feeding 20%) is NOT significant
- Avoid purification steps has significant economic advantage

Impact of Electrode Fabrication : Binder and Conductor

- Conductor/Binder pairs: CB/PAA, CB/PVDF, CNT/CMC, etc
- CNT/CMC pair is the best because of linear CNT contact
- 10% CNT/CMC in electrode shows a good balance of ICE and cycle life

Task 5: Scaling Up the Optimal Procedure

- Bench-scale testing (Kg-level)
- Scale up by >20X
- The initial capacities decrease by about 2-5%,

ICE by 1.0% and capacity retention by <5%

Batch	Initial Capacity	ICE	Capacity retention 85%
1 st	1832	78.3%	>400
2 nd	1817	78.4%	>400
3 rd	1854	78.5%	Ongoing
VS Lab-scale Sample	2-5%	1%	<5%

OF

Summary

• The pSi/G anode produced by Route B (SiO) meets the objectives

Performance Attribute	Performance Requirement	Reference Materials (S450-2A)	1 st year Performance	End of the Project
1 st -cycle Specific Capacity (mAh/g)	1000	450	1500	1800
ICE (Initial Columbic Efficiency)	>80	80	79	79
Cycling Life (with 85% of capacity retention)	300	200	230	500

- Successful scale up by > 20X to 0.3kg/batch level and easily scalable further
- <u>Journal Article</u>: "In Situ Synthesis of Graphene-Coated Silicon Monoxide Anodes from Coal-Derived Humic Acid for High-Performance Lithium-Ion Batteries". *Advanced Functional Materials* **2021**, *31* (32), 2101645.
- <u>Conference Presentation and Paper</u>: "Facile Synthesis of Micrometer-sized Hierarchical Porous Si@C Anodes for High-Performance Lithium-Ion Batteries". *The 45th International Technical Conference on Clean Energy*, Virtual, July 26-29, 2021.
- Patent: Hou, X.; Xu, S. "Battery Materials and Fabrication Methods". USA 62/706,191, August 4, 2020.
- <u>Commercialization</u>: a private company interested in licensing this technology and sponsored us \$250,000 to further develop the technology into a market-ready product.

Acknowledgement

• Sponsors

- o DOE UCFER program
- o Clean Republic LLC

Collaborators

- Dr. Christopher Matranga (NETL)
- Dr. Congjun Wang (NETL)
- Dr. Michael Mann (UND IES)
- o Dr. Julia Zhao (UND chemistry Department)
- Dr. Yong Hou (Clean Republic LLC)

Students

- o Shuai Xu
- Andrew Dockter
- \circ Xin Zhang
- o Di Sun

