Core-Shell MOFs for Direct Air Capture

Prof. Katherine Hornbostel (Pitt, PI)
Prof. Chris Wilmer (Pitt, co-PI)
Prof. Nathaniel Rosi (Pitt, co-PI)
Dr. Janice Steckel (NETL liaison)

UCFER Task 05-UPitt-S1-22
Annual Project Review Meeting
October 5, 2021
Who’s on our team?

Dr. Katherine Hornbostel
Assistant Professor
MEMS & ChemE, Pitt

Dr. Katherine Hornbostel
Assistant Professor
MEMS & ChemE, Pitt

Dr. Chris Wilmer
Associate Professor
ChemE, Pitt

Dr. Chris Wilmer
Associate Professor
ChemE, Pitt

Dr. Nathaniel Rosi
Professor
Chemistry, Pitt

Dr. Nathaniel Rosi
Professor
Chemistry, Pitt

Yiwen He
Grad student, Chemistry

Yiwen He
Grad student, Chemistry

Austin Lieber
Grad student, MechE

Austin Lieber
Grad student, MechE

Paul Boone
Grad student, ChemE

Paul Boone
Grad student, ChemE

Dr. Janice Steckel
Research Scientist, NETL

Dr. Janice Steckel
Research Scientist, NETL
Project goal & objectives

Project goal: identify and characterize a core-shell MOF design that strongly binds CO$_2$ and has a high selectivity for CO$_2$ over N$_2$/O$_2$/H$_2$O

Project objectives:
1. Computationally identify optimal core-shell combinations for direct air capture.
 Dr. Wilmer’s team
2. Synthesize and characterize optimal core-shell MOFs.
 Dr. Rosi’s team
3. Determine the optimal core-shell MOF packing structure.
 Dr. Hornbostel’s team
What are core-shell MOFs?

1. MOFs = Metal-Organic Frameworks
 1. organic-inorganic hybrid crystalline porous materials
 2. consist of a regular array of positively charged metal ions interconnected by organic 'linker' molecules

2. Core-Shell MOFs = Core MOF + Shell MOF
 1. Core MOF in center
 2. Different shell MOF grown around core MOF
Why core-shell MOFs for DAC?

1. MOFs are great for traditional carbon capture
 1. Can pack lots of gas into small volume (i.e., great for gas *storage*)
 2. Can have high affinity to CO₂ over other species (i.e., great for gas *separations*)
 3. Scalable to industrial applications

2. Core-shell MOFs allow us to optimize for two properties
 1. Core MOF has high affinity to CO₂
 2. Shell MOF rejects H₂O
Basic core-shell MOF design

Ideal shell MOF:
• Low H₂O diffusivity
• High CO₂ diffusivity

Ideal core MOF:
• High CO₂ working capacity
• Low N₂ working capacity

Size the thickness of the shell and the volume of the core so that by the time H₂O breaks through the shell into the core, the core is full of CO₂.
What is the process?

Stage 1: adsorption
- Air (with reduced CO₂)
- Concentrated CO₂
- Applied heat
- Partial vacuum

Stage 2: regeneration
- Packed Bed Reactor
- Air (at “outside” temp and pressure and humidity)
Objective 1: Computationally identify optimal core-shell combinations for direct air capture.

Dr. Chris Wilmer
Screening Overview

Two MOFs

<table>
<thead>
<tr>
<th>MOF</th>
<th>Functional Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIO-66</td>
<td>F, N<sub>3</sub>, alkane-OC<sub>3</sub>, alkane-HNC<sub>3</sub>, NC<sub>4</sub></td>
</tr>
<tr>
<td>UIO-67</td>
<td>OH, CF<sub>3</sub>, alkane-OC<sub>4</sub>, alkane-HNC<sub>4</sub>, ring-HNC<sub>5</sub></td>
</tr>
<tr>
<td></td>
<td>NH<sub>2</sub>, branched-HNC<sub>5</sub>, alkane-OC<sub>5</sub>, alkane-HNC<sub>5</sub>, ring-HNC<sub>6</sub></td>
</tr>
</tbody>
</table>

Three Gases: CO₂, H₂O, N₂

Measure:
- Diffusion in LAMMPS (all gases)
- Adsorption in RASPA at two process conditions:
 - STP (1 atm, 298K)
 - 15 mbar, 373K
MOFUN: Find / Replace Functionalized Linkers

Find / replace functionalized linkers into structure

Often results in unrealistic functional group overlap!

Run NVT to relax functional group into more reasonable configuration.
Diffusion Selectivities

Functional Group - Diffusivity x 1e4 [Å² / fs]
Adsorption Selectivities
Screening Results

MOFs

<table>
<thead>
<tr>
<th>MOFs</th>
<th>Functional Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIO-66</td>
<td></td>
</tr>
<tr>
<td>UIO-67</td>
<td></td>
</tr>
</tbody>
</table>

Functional Groups

- **F**
- **N₃**
- **alkane-OC₃**
- **alkane-HNC₃**
- **NC₄**
- **OH**
- **CF₃**
- **alkane-OC₄**
- **alkane-HNC₄**
- **ring-HNC₅**
- **NH₂**
- **branched-HNC₅**
- **alkane-OC₅**
- **alkane-HNC₅**
- **ring-HNC₆**

Best shell MOF candidates (UIO-67): F, OH, NH₂, alkane-OC₄

Best core MOF candidates (UIO-67): longest hydrocarbons

Best core MOF candidate: UIO66-NC₄
Objective 2: Synthesize & characterize optimal core-shell MOFs.

Dr. Nathaniel Rosi
Core-Shell MOFs for Molecular Separations

Li, Rosi, et al. JACS 2013

UiO-Based Core-Shell MOFs

Luo, Rosi, et al. JACS 2019
Ligand Design

Core ligand design strategy:
Lewis basic groups: \(\text{NH}_2^-, \text{OH}^-, \text{N}_3^- \)

Forming Lewis acid-base pair with \(\text{CO}_2 \)

Shell ligand design strategy:
Hydrophobic groups: alkylamino, alkylhydroxyl, F-

Preventing water from entering core MOF
Synthesis of UiO-67 MOFs

H₂-BPDC (UiO-67)
H₂-Me-BPDC (Me-UiO-67)
H₂-NH₂-BPDC (NH₂-UiO-67)
H₂-2NH₂-BPDC (2NH₂-UiO-67)

2 Theta/Degree

UiO-67
NH₂-UiO-67
Me-UiO-67
2NH₂-UiO-67
UiO-67 simulated
Characterizations of UiO-67 MOFs

N₂ adsorption isotherms at 77K

CO₂ adsorption isotherms at 298K

N₂ adsorption isotherms at 298K
Comparison of Experimental Results vs. Simulation Results

Adsorption @ STP:

CO$_2$ loading a cc/g at 4.2x10$^{-4}$ bar, 298 K
N$_2$ loading b cc/g at 0.79 bar, 298 K

Adsorption selectivity = $\frac{a}{4.2 \times 10^{-4}} \div \frac{b}{0.79}$

<table>
<thead>
<tr>
<th></th>
<th>UiO-67</th>
<th>NH$_2$-UiO-67</th>
<th>2NH$_2$-UiO-67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Results</td>
<td>7.11</td>
<td>7.45</td>
<td>8.33</td>
</tr>
<tr>
<td>Experimental Results</td>
<td>7.20</td>
<td>28.9</td>
<td>133</td>
</tr>
</tbody>
</table>

Simulation results have lower selectivity but similar trend
Selection of Core-shell MOF Pair

Core:

- Highest CO$_2$ over N$_2$ adsorption selectivity: 31
- High CO$_2$ capacity: 0.0104 cm3/g (STP, 42.18 Pa, 298K)

Shell:

- High CO$_2$/H$_2$O diffusion selectivity: 307
- High CO$_2$ diffusivity: 4.98 Å2/fs
(CyNH)$_2$–**UiO-67** (Core MOF) synthesis

ZrCl$_4$ + **[(CyNH)$_2$]**$
ightarrow$**CH$_3$COOH, DMF**$
ightarrow$120 °C

(CyNH)$_2$-**UiO-67**

Average diameter: 422 ± 22 nm
NH$_2$-UiO-67 (Shell MOF) Synthesis

Zr(OnPr)$_4$ +

\[
\text{CH}_3\text{COOH, DMF}
\]

65 °C

NH$_2$-UiO-67

Average diameter: 363±22 nm

Size distributions (based on 300 counts)
Core-Shell MOF Synthesis

$\text{(CyNH)}_2\text{-UiO-67 seeds} + \text{Zr(OnPr)}_4 + \text{NH}_2\text{-BPDC} \xrightarrow{\text{CH}_3\text{COOH, DMF}} 65 \degree \text{C} \xrightarrow{} \text{(CyNH)}_2\text{-UiO-67⊂NH}_2\text{-UiO-67}$

Average diameter:
- $\text{(CyNH)}_2\text{-UiO-67 seeds: 546±61 nm}$
- $\text{(CyNH)}_2\text{-UiO-67⊂NH}_2\text{-UiO-67: 746±78 nm}$
Objective 3: Determine the optimal core-shell MOF packing structure.

Dr. Katherine Hornbostel
Goal: Optimize the particle and reactor designs for core-shell MOFs.

1. Optimize pellet/particle design

2. Optimize reactor design

Benchmark: Separate MOF reactors

https://commons.wikimedia.org/wiki/File:Fluidized_Bed_Reactor_Graphic.JPG
Q1: Developed COMSOL Multiphysics model of packed bed reactor filled with MOF pellets.
Q2: Developed COMSOL Multiphysics model of individual MOF pellet exposed to air flow.
Q3: Langmuir constants were extrapolated from experimental data and incorporated into the single pellet model.
Q3: Initial modeling results using the predicted isotherm values show physical accuracy.
Q4: Investigated different options for 3D-printed MOF monoliths available at Pitt.

- **Filament Printer**
- **Filament Extruder**
- **Food Printer**
- **Current Industry Method**
- **Binder Jet Printer**
- **Laser Sintering Process**

Printing Method

Shortcomings
Project Schedule

<table>
<thead>
<tr>
<th>Obj.</th>
<th>Task</th>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1 Simulate CO$_2$/N$_2$/H$_2$O adsorption in all CoRE database MOFs.</td>
<td>Q1 Q2</td>
<td>Q4 Q1</td>
</tr>
<tr>
<td></td>
<td>1.2 Simulate CO$_2$/N$_2$/H$_2$O diffusivity in all CoRE database MOFs.</td>
<td>Q4 Q1</td>
<td>Q4 Q1</td>
</tr>
<tr>
<td></td>
<td>1.3 Identify optimal core-shell MOF pairs.</td>
<td>Q3 Q3</td>
<td>Q3 Q4</td>
</tr>
<tr>
<td></td>
<td>1.4 Model water stability in 5 highest ranked core-shell MOF candidates.</td>
<td>Q3 Q3</td>
<td>Q4 Q4</td>
</tr>
<tr>
<td></td>
<td>Year 1</td>
<td>Year 2</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>2.1 Prepare and characterize adsorption properties of target MOFs for core and shell domains.</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>2.2 Develop synthetic protocols for preparing core-shell MOFs with selected core and shell domains with optimal properties.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Characterize CO₂ capture performance of core-shell MOFs in dry and humid air.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Create 3D-printed monolith with core MOF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Coat monolith in shell MOF and test core-shell monolith.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Perform experiments on core-shell MOF powder.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next steps

1. **Wilmer team:**
 1. Score and rank core-shell MOF combinations based on combined adsorption/diffusion properties
 2. Screen smaller subset of candidate core-shell MOFs with higher fidelity simulations

2. **Rosi team:**
 1. Adsorption characterization of core-shell system
 2. Examination of properties as function of core and shell thickness

3. **Hornbostel team:**
 1. Finish developing single pellet core-shell model and perform parametric studies
 2. 3D-print first core-shell MOF monolith

4. **Everyone:** start drafting first journal paper(s) based on this work
Thank you! Questions?

Shell MOFs + Core MOFs → Core-Shell MOF Combinations