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Processing—microStructure—Property connection

property
PSP connection: A fundamental tenet of

materials science is that Processing
generates the microStructure that mediates
material Properties

materials

science Microstructure: the key link between what

we control (processing parameters) and

: . what we achieve (material property)
processing microstructure
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machine learning for exploring PSP connection

prosers Given its ability to find relationships in large,
complex data sets, machine learning (ML) seems
tailor-made for exploring PSP connections.

In this project, we develop and apply computer
vision (CV) tools to create quantitative
representations of microstructural images and
apply ML methods to answer the question:

Can we predict material properties from images
of the material microstructure?

Collect Process Represent Learn
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pipeline

1. Collect microstructural image data and property metadata for
heat resistant alloy systems.

2. Develop CV techniques to extract knowledge from
microstructural images.

3. Create ML systems to find relationships between microstructures
and property metadata.

4. Analyze and interpret the results to discover new PSP
connections. Carnegie

Mellon
University




Datasets — image data and property metadata

newly machined tensile sample. Tested on 4/27/2021.

-] ; 5 . 740C
HR68-T1 |25 680.2 511.73 58 28.92 machined tensile sample. Tested on 4/27/2021. edat 740 C |
HR71-T1 |25 957.3 864.97 57.6 17.86 newly machined tensile sample. Tested on 4/27/2021. processed at 1015 C
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Computer vision and CNN
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Computer vision: is a field of artificial
intelligence (Al) that enables computers
and systems to derive meaningful
information from digital images,

videos and other visual inputs

Most computer vision algorithms use
convolution neural networks, or CNNs.
A CNN is a model used in machine
learning to extract features, like texture
and edges, from spatial data
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CNN -VGG16
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Prediction of yield stress on 3 sample series

Electron Image 28

HR-53

Electron Image 10

YS 0.2 (MPa)

HR52-T1 HR53-T1 HR54-T1 HRS8-T1 HR62-T1 HR63-T1 HR66-T1 HR67-T1 HR68-T1 HR71-T1

HR-53: 590.6 MPa
HR-66: 445.39 MPa

HR-68: 511.73 MPa Carnegie
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Feature visualization
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Yield stress prediction by regression model
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Prediction error is the difference between true value and predicted value. In our
research, we define the accurate prediction as the prediction within +- 15 MPa
considering that experimental error of measuring yield stress. The prediction
accuracy is 87.2%.
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Prediction of yield stress on 7 sample series

YS 0.2 (MPa)

650.0
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400.0
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Can we predict the YS for the different classes with
very close YS just based on their visual difference?
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Feature visualization
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Key issue:
1. recognize the difference between inter-class (largely different YS)
and intra-class (close YS) Carnegle
2. distinguish the similarity of intra-class (close YS) Mellon
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Accurate yield stress prediction
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accuracy within 15 MPa prediction error:

96.35%

Carnegie
Mellon
University



=50

-100

frequency
&

Comparison of regression models
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accuracy within 15 MPa prediction error:
much narrower distribution with improved regression process
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Summary

In order to answer the question:
Can we predict material properties from images of the material microstructure?

1.
2.
3.

Image data and property metadata are built to explore PSP connection

Data is selected and processed for CV/ML tasks

VGG16 is used to extracted features from image dataset and the characteristic
features are used to make connection between the property

VGG16 shows high interpretability via feature representation method — t-sne
Regression models are well built to predict yield stress (property) of heat resistant
alloy (microstructure). The prediction accuracy can be as high as 96.35%
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