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Motivation

The application of ML algorithms can be particularly effective for 
reacting flows, because of their physical and chemical complexity



Program Overview 

• Overarching Problem
– Development of a general framework for scale-bridging modeling 

between full-fidelity simulations and coarse-grained simulations

– Emphasize industrially-relevant applications: multiphase chemically 
reacting flows (e.g., fluidized beds)

• Computational Investigation
– Inaccessible with DNS: too many scales, too many species1,2

– Requires filtered TFM and an appropriate closure model

• Program Outcome
– An automated workflow for data-based scale-bridging modeling 

between DEM and filtered TFM

1 S. Cant. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering 
Sciences 360.1795 (2002), pp. 1211–1225.
2 J.H. Chen.  Proceedings of the Combustion Institute 33.1 (2011), pp. 99–123.



Training Data

3 J. Lee, et al. Combust. Flame 216 (2020) 1–8

● Premixed hydrogen jet flame3

● R: Stoichiometric H2/Air 
mixture diluted with N2 (20% 
by volume)

● P: Equilibrium products

● Re = 5000
● Multiple Ka cases:

● K1: Ka = 3.7
● K2: Ka = 54 

• D = 1.08 mm (K1), 4.32 mm (K2)

• DNS data is filtered with a 
Gaussian filter of varying filter 
sizes

● Δ = 2, 4, 8, 16

R PP PP Δ = 4 Δ = 16



Numerical modeling for CFD
In combustion, the progress variable C is often defined to track the progress of reaction. As 
we are operating with a hydrogen flame, it is set equal to:

For coarse-grain modeling, an unclosed quantity that is essential in CFD simulations is the 
filtered dissipation, which is defined as:

Pierce model4:
(physical model)

4 C.D. Pierce, et al. Phys. Fluids 10 (12) (1998) 3041–3044



Numerical modeling for CFD
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Artificial Neural Networks (ANNs) are non-linear universal approximators, consisting 
of a structure of interconnected layers of neurons. 

Architecture: 33 Layers, 36 Neurons
Mean Absolute Error: 0.208
Training Time: 3 hours
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Numerical modeling for CFD

Several questions are still open:

1) Can we pre-process the data to increase the 
accuracy of the mathematical model and also to 

accelerate the training time?

2) Can we automate the selection of the inputs, 
without prior knowledge of the physics?

3) How can we automatically select the best 
architecture and hyperparameters for an ANN? Can 

we enforce physical constraint?
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Can we pre-process the data to increase the accuracy of the mathematical model and 
also to accelerate the training time?



Data sampling

It is possible to condition the input using one variable:

Having an input matrix accounting for a large number of statistical observations could be
an issue in terms of computational cost, memory requirements and tendency to overfit.

Thus, for many practical applications it is a good strategy to sample the original matrix.



Data sampling

All the rows of the input matrix X where alpha 
is bounded between a given interval are 
grouped together

A certain number of observations is then retained (randomly) from each group, Gj



Data sampling
Full data size: 4,000,000 statistical observations

Sampled data size: 750,000 statistical observations
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Physics-Based Dimensionality Reduction

Input matrix accounting for ‘p’ features: 

Before feeding the input matrix to any kind of statistical algorithm, it is necessary to pre-
process the columns so that all the variables’ units are coherent. 

This operation is usually accomplished by scaling each variable with a statistical 
quantity, e.g., with its standard deviation 

In real-world problems it is likely to deal with
multivariate data, consisting of variables which have
different units and ranges



Physics-Based Dimensionality Reduction

From the Buckingam Pi Theorem, it is known that k fundamental dimensions can be found:
the input matrix can thus be expressed by using only (p-k) dimensionless groups

j-th
dimensionless group

i-th feature

Exponent of the i-th feature
in the j-th dimensionless group

Alternatively, it is possible to find (p-k)+1 dimensionally consistent groups by forming an
extra group accounting the k fundamental dimensions.

Considering the Pi groups, we can get dimensionally consistent input groups that match
the dimension of the output. At the same time, we also reduce the number of input
variables.



Physics-Based Dimensionality Reduction
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Fundamental dimensions:
Mass of product, Mass of mixture, time, distance.



Physics-Based Dimensionality Reduction

8 Dimensional Features 5 Dimensionally Consistent Features
Network Architecture: 33 Layers, 36 Neurons

Mean Absolute Error: 0.208
Training Time: 3 hours

Network Architecture: 13 Layers, 34 Neurons
Mean Absolute Error: 0.078

Training Time: 1.5 hours

• With fewer features: smaller network, lower testing error, lower 
training time

• For large p and small k, (p-k)+1 is still large, so may need to further 
reduce dimensionality of the feature space
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Dimensionality reduction via PCA
Original input matrix Covariance matrix computation

and decomposition

Principal Components: eigenvectors obtained from the 
decomposition of the matrix C

Eigenvalues: portion of information (original data 
variance) accounted by each PC

Input matrix:
‘n’ statistical observations of ‘p’ variables

y y y

x x x



Dimensionality reduction via PCA
The application of the PCA algorithm is appropriate for this framework as it is possible to
automatically determine the optimal dimensionality of the reduced manifold by
examining the eigenvalues’ magnitude distribution5,6

5 I. Jolliffe. Principal component analysis. Springer, New York, NY, 1986. 129-155.
6 G. D’Alessio, et al. Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, 2020. 233-251.

In this case, from the analysis of the eigenvalues’ distribution, a 5-dimensional manifold
is enough to explain almost the 100% of the original data variance. This is the same
dimensionality obtained from the Pi-group analysis (dimensionally-consistent inputs).



Proposed pipeline

Input 
data

Artificial 
Neural 

Networks

Data 
pre-processing

Numerical
Modeling

Data sampling

Outlier removal

and

Dimensionality
reduction

and

Principal 
Component 

Anaysis

Pi groups 
analysis

How the can we automatically select the best architecture and hyperparameters for 
an ANN? Can we enforce physical constraint?

Variable(s)
of

interest



Iterative ANN training algorithm

𝑁 =
nneurons_start

nlayers_start

Train Model

Evaluate Model 
Error

Update Error Fit 
Function

Extrapolate Network 
Architecture of Next 

Iteration

Error < 
Threshold

DNN

N

model

error

Yes
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Error(N) = aN-b + c

N’

Input vars Output vars

Nlayers

Nneurons Nneurons Nneurons

An iterative algorithm is now used to select
the best architecture in an unsupervised
fashion



Short to medium period actions
1) Finding a way to enforce physical constraint into the mathematical model, to 
increase the regression accuracy 

Many physical variables are strictly positive or non-negative, by definition (e.g., chemical species mass 
fractions). Ideally, it is possible to force the network to predict a positive variable by considering a log 
space. Realistically, it might be complicated to find a solution to automate the enforcing.

x
input vector

y
variable 

of interest

Case 1 - Prediction in physical space

In this case, the prediction of the variable of interest 
can be positive, negative, or zero.

Case 2 - Prediction in log space

x
input vector

z = log(y)
Log of variable 

of interest

In this case, we are forcing the prediction of the variable 
of interest y to be strictly positive.



Short to medium period actions
2) Integrate on-the-fly learning curves diagnostics to avoid overfitting

By means of early stopping, it is possible to
interrupt the ANN training before the network
starts overfitting

Good fit behaviour Overfitting behaviour



Short to medium period actions
3) Extend the framework to multiphase chemically reacting flows

7 Y. Jiang, et al. Chemical Engineering Science 230 (2021): 116235
8 S. Sundaresan et al. Annual review of chemical and biomolecular engineering 9 (2018): 61-81

Image credits: Sundaresan et al. [8]

The main objective is to train the framework
on massive CFD-DEM dataset or Two-Fluid
Model (TFM) numerical simulations, to then
automatically get the reduced model (i.e., a
closure model) for the corresponding
Filtered-TFM7

Moreover, we are also interested in
performing data analysis on the CFD-DEM or
TFM training set to discover how to optimally
select the best input variables, in an
unsupervised fashion



Project Schedule

• Year One
– Identification of target applications and closure models 

– Framework development and a priori testing

• Year Two
– A posteriori validation of the proposed framework using selected target 

applications and closure models

– Scale-bridging modeling implementation

• The optimized framework for the automated training will be included into 
Nodeworks workflow environment software. 

• The software will be tested for data-based scale-bridging modeling between 
DEM and filtered TFM

Close collaboration with NETL researchers will be required for these tasks



Thank you for your attention


