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Tasks and Milestones
 Project period: 11/01/2019 – 12/31/2021 
 Task 1: Develop supervised and unsupervised machine learning (ML) 

methods to automatically segment the enormous volume of CT images of 
reservoir rocks in NETL’s Geoimaging Lab (Aim R1; completed)

 Task 2: Use physics-informed ML models to predict rock’s transport 
properties (e.g., absolute permeability [k] and relative permeability [kr]) 
from the segmented CT images (Aim R1; partially completed)

 Task 3: Develop a Graphical User Interface (GUI) to manage and 
visualize rock CT images and lab-measured kr curves from Geoimaging
Lab (Aim R2; completed) 

 Task 4: Work with the UI team to collect well logging data from the IBDP 
project (CCS1) and ICCS project (CCS2) (Aim R3; completed)  

 Task 5: Develop a scale-bridging data assimilation framework to integrate 
rock’s transport properties obtained at various spatial scales and to 
calibrate the upscaled kr curves using well-scale observation data of CO2
plume migration (Aim R3; partially completed)
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Publications and Products
Journal papers:
1. Fan, M., Y. Han, X. Tan, L. Fan, E. S. Gilliland, N. Ripepi, and C. Chen (2021), Experimental and 

Numerical Characterization of Lower Huron Shale as a Heterogeneous Material, Rock Mechanics 
and Rock Engineering, 54(8), 4183-4200. https://doi.org/10.1007/s00603-021-02491-2.

2. Fan, M., J. McClure, R. Armstrong, M. Shabaninejad, L. E. Dalton, D. Crandall, and C. Chen 
(2020), Influence of Clay Wettability Alteration on Relative Permeability, Geophysical Research 
Letters, 47, e2020GL088545, https://doi.org/10.1029/2020GL088545.

3. Guo, R., L. E. Dalton, M. Fan, J. McClure, L. Zeng, D. Crandall, and C. Chen (2020), The Role of 
the Spatial Heterogeneity and Correlation Length of Surface Wettability on Two-Phase Flow in a 
CO2-Water-Rock System, Advances in Water Resources, 146, 103763, 
https://doi.org/10.1016/j.advwatres.2020.103763.  

4. Zhou, X., J. McClure, C. Chen, and H. Xiao (2021), Neural Network Based Velocity Prediction in 
Porous Media from Geometry assistedwith Super-resolution, Physical Review Fluids, under 
review.

5. Wang, H., L. Dalton, M. Fan, R. Guo, J. McClure, D. Crandall, and C. Chen (2021), Deep-
learning-based workflow for partial volume segmentation in rock CT images: Application of 
entropy-assisted indicator kriging and UNet++, Advances in Water Resources, under review.

6. Wang, H, D. Crandall, L. Dalton, and C. Chen (2021), Multi-phase flow simulation based on multi-
class segmented digital rock images: Application of the unsupervised learning algorithm, in 
preparation. 
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Publications and Products
Conference papers:
1. Wang, H., D. Crandall, L. Dalton, and C. Chen (2021), Application of Convolutional Neural 

Networks in Digital Rock Segmentation: Supervised and unsupervised learning algorithms, 45th 
International Technical Conference on Clean Energy, July 26 - 29, Clearwater, Florida, USA, 
Paper ID: 154, paper length: 10 pages.

2. Wang, H., D. Crandall, L. Dalton, and C. Chen (2021), Applications of Convolutional Neural 
Networks in Digital Rock Segmentation: Supervised and Unsupervised Machine Learning 
Algorithms, Poster ID: 756, InterPore2021, May 31 – June 4, Berlin, German.

3. Wang, H, D. Crandall, L. Dalton, and C. Chen (2020), Multi-phase Segmentation of Digital Rock 
Images Using Convolution Neural Network: Training Dataset Generation, Model Training, and 
Result Visualization, Poster ID: IN011-13, American Geophysical Union (AGU) 2020 Fall 
Meeting.

Software:
1. A Jupyter Notebook based GUI software package for the management and visualization of rock 

CT images and core flooding experiments. 
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Core to Large-Scale Upscaling
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Digital Image Segmentation

 Segmentation of gray-scale digital images into binary images 
before pore-scale modeling.

 Manual segmentation can be slow and has uncertainties.
 An industry CT scanner can generate 1500 gigabytes of raw 

CT image data (more than 50000 2D images) per week.
 Need a consistent, efficient, and automatic approach. 
 Supervised machine learning can do the job.
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Raw CT image Binary image

Segmentation

1 .  S u p e r v i s e d  L e a r n i n g



How to Find Ground Truth in Supervised ML?

 Need labeled data for model training and validation. 
 It is kind of a chicken and egg problem… 
 Developed an indicator kriging workflow to generate high-

accuracy labeled image data sets. 

9

Training:

Validation
& Testing:

Gray-scale image

ML 
model Labeled binary image 

(ground truth)

Gray-scale image

ML 
model Predicted binary image

1 .  S u p e r v i s e d  L e a r n i n g



Generation of High-Accuracy Labeled Data
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Generation of High-Accuracy Labeled Data
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1 .  S u p e r v i s e d  L e a r n i n g

Entropy-based-masking indicator kriging (IK-EBM) mitigates the partial volume 
blurring (PVB) effect and leads to the highest segmentation accuracy. 



U-Net ++

 A state-of-the-art supervised learning model, U-net ++.
 Re-designed skip connections, which improve segmentation accuracy and 

make training faster. 
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U-net (Ronneberger et al., 2015) U-net++ (Wang et al., 2021; after Zhou et al., 2019)

1 .  S u p e r v i s e d  L e a r n i n g



U-Net ++

 Improved segmentation performance.  
 Main improvements on boundary and small target segmentation accuracy. 
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Model comparison

U-net Error Map Wide U-net Error Map U-net ++ Error Map

1 .  S u p e r v i s e d  L e a r n i n g



U-Net ++

 Multiscale feature aggregation in U-net++ better extracts fine-scale features 
(e.g., solid-void boundaries) and leads to faster convergence. 
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Validation accuracy vs. Epoch

1 .  S u p e r v i s e d  L e a r n i n g

 Mean  scCO2  Brine  Rock Pyrite  
U-net 0.9714 0.8480 0.7441 0.9983 0.9514 

Wide U-net 0.9724 0.8737 0.7479 0.9987 0.9778 
U-net ++ 0.9805 0.9202 0.8153 0.9985 0.9832 

 

Test accuracy: Mean and class accuracy



1 .  U n s u p e r v i s e d  L e a r n i n g

 How about the cases in which we do not have label data
 Or no time to generate large-volume label datasets?
 Can unsupervised machine learning help? 

Clustering: pixels having similar features receive the same label

Three criteria [Kanezaki, A. (2018, April) ]:
(a) Pixels with similar features are desired to be assigned the same 
label.
(b) Spatially continuous pixels are desired to be assigned the same 
label.
(c) The number of cluster labels is desired to be large.



1 .  U n s u p e r v i s e d  L e a r n i n g

Step 1: Prediction of cluster labels with a fixed network.
Step 2: Training of network parameters with predicted cluster labels.
Step 3: Repeat Steps 1 and 2 until the loss function minimized.
Step 4: Re-clustering to three labels: scCO2, brine, and rock.

Three criteria [Kanezaki, A. (2018, April) ]:
(a) Pixels of similar features are desired to be assigned the same label.
(b) Spatially continuous pixels are desired to be assigned the same label.
(c) The number of unique cluster labels is desired to be large.

Unsupervised machine learning algorithm(Wang et al., 2021; after Kim, et al. 2020)



Raw Image:
three phases: CO2, Brine, and
Rock.

Grayscale-based image
segmentation

Unsupervised-learning 
segmentation: 8 labels.

Re-clustering

Advantages: 
(1) Automatic, fast and accurate;
(2) Feature continuity and local 

smoothness.

1 .  U n s u p e r v i s e d  L e a r n i n g

Solid?
CO2?



1 .  U n s u p e r v i s e d  L e a r n i n g

Raw Image - three phases: 
CO2, Brine, and Rock.

Raw Image with Gaussian 
noise: Mean: 0; S.d.: 20.

Unsupervised segmentation

Unsupervised segmentation

 Great noise tolerance. 



R e s u l t  D i s c u s s i o n s

 The IK-EBM mitigates the PVB effect and leads to improved 
segmentation accuracy and high-quality training datasets. 

 Convolutional Neural Networks achieve good performance of image 
segmentation because of local connectivity, weight sharing, and scalability 
robustness.

 Features extracted by CNN not only include grayscale values, but also 
contain geometric info and pattern.

 Supervised learning algorithms maximize the value of existing data, 
including raw images and segmentation images.

 A well-trained supervised ML model can achieve segmentation quality as 
good as training data at the millisecond scale.

 If training data are unavailable, unsupervised learning algorithms provide 
automatic, fast, and accurate segmentation. Processing time can be as short 
as seconds.



Physics-Informed Machine Learning

 Low-resolution flow field provides physics information and constraints.
 Enhances model accuracy at a relatively low cost.
 Effective in simulating flow fields in vuggy pore space, which is highly 

relevant to energy recovery in carbonate reservoirs.   
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Data-driven 
training:

Physics-informed
training:

High-resolution pore 
geometry

ML 
model High-resolution flow field (LB 

simulation on a fine mesh)

High-resolution pore 
geometry
+ Low-resolution flow 
field (LB simulation on a 
coarse mesh)

ML 
model High-resolution flow field (LB 

simulation on a fine mesh)

2 .  P h y s i c s - I n f o r m e d  M a c h i n e  
L e a r n i n g
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 Pure geometry input leads to discontinuity of flow field in vuggy space.
 Low-resolution flow field input alleviates this issue, leading to lower 

generalization error.  

Ground truth pred. w/o coarse velocity
Validation error: 11.52% 

pred. w/ coarse velocity
Validation error: 7.44/% 

Ground truth pred. w/o coarse velocity
Validation error: 60.16% 

pred. w/ coarse velocity
Validation error: 17.74/% 

2 .  P h y s i c s - I n f o r m e d  M a c h i n e  
L e a r n i n g
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1

concat
conv (+ BN) + ReLu
max pool
up ‐ sampling
1x1 conv

3232 64

128*128*128

64*64*64

32*32*32
64 64 128

128 128 256

128 + 256 128 128 + 128 128

64 + 256 64 64

1 16 32 132+64 32 32

32*32*32

Schematic of the proposed convolutional neural network to predict the flow field in porous media. Gray
boxes represent feature maps. White boxes represent copied feature maps from the encoder part; brown boxes
represent the feature maps from the input of coarse scale velocity. 

The number of channels is denoted above each feature map. The sizes of 3D images in each level are denoted 
above the concatenation arrows. The arrows with different colors denote the different operations.

Neural Network Architecture

2 .  P h y s i c s - I n f o r m e d  M a c h i n e  
L e a r n i n g
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3 . W e l l  L o g g i n g  D a t a  a n d  M L  

Well Locations Perforation Depth and Target Reservoir:
Baffle guarantees project independence

Project Name Well Name Lithology Interpretation 
Data

CO2 Saturation 
Monitoring Data

Illinois Basin – Decatur 
Project (IBDP)

CCS1

Available Available
VW1

Illinois Industrial Carbon 
Capture and Storage Project 
(IL-ICCS)

CCS2

VW2

CCS: Carbon capture and storage; VW: Verification well
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3 . W e l l  L o g g i n g  D a t a  a n d  M L  

 Well logging interpretation requires rich experience, time, and expense. 
 Well-trained model allows beginners to obtain good interpretation results.

Goals:
(1) Mineral composition prediction from raw log data (in progress)
(2) Rock type interpretation from raw log data (in progress)
(3) CO2 saturation interpretation using supervised or unsupervised learning. (in progress)

Goal (1) and (2) use same dataset;  Goal (1) and (3) use the same algorithm.

(1) Algorithms: 
KNN; Decision tree; Random forest; XGBoost; LightGBM with or without wavelet transform 
data; Support vector machine.

(2)  Useful Python packages: 
Data analysis: Pandas, Numpy, Seaborn;
Well logging data pre-processing: Cegal;
Machine learning implementation: Keras, TensorFlow, sklearn.
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Methodology: Quartz composition as an example.
(1) Support Vector Regression (SVR) with different kernels. 

3 . W e l l  L o g g i n g  D a t a  a n d  M L  

Radial basis function kernel
MSE: 0.00874

Linear kernel
MSE: 0.01212

(2) Deep Neural Network (DNN): Works well for quartz.  MSE still high for minerals 
having small fractions. Need to test more network architectures and hyper-parameters.

Polynomial kernel
MSE: 0.02586

Fully connected networks: 
Three layers with 100 nodes in 
each layer
MSE: 0.00159

x:True value and y: predicted value

Reference line: y = x
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4 . D a t a A s s i m i l a t i o n F r a m e w o r k  

Goals: Learning relative permeability curve by data assimilation

Major modules:
(1) Neural network for ݇௥ modelling；
(2) DAFI + OPM Flow Solver for computing gradient డ௃

డ௞ೝ
.

DA framework for kr curve learning:  kr is an intermediate, hidden variable 
because it cannot be directly observed. Observation data (e.g. oil/gas
saturations in some cells) are used to update the weights.

kr
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4 . D a t a A s s i m i l a t i o n F r a m e w o r k  

Overview of the framework: DAFI contains two main classes, the PhysicalModel and
InverseMethod. The physical model is provided by the OPM Flow Solver and input file
(including the Kr curves). The InverseModel updates the parameters in Kr curves based
on the observation data.
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4 . D a t a A s s i m i l a t i o n F r a m e w o r k  

Study with A Benchmark Case – SPE1

• The Society of Petroleum Engineers (SPE) has run a series of comparative solutions
projects with the aim of comparing and benchmarking different simulators.

• In this study, the first project (SPE1) is introduced as the three-dimensional black oil
simulation benchmark case.

• The first well (red) injects gas from the top layer at a rate of 100 MMscf/day with a BHP 
limit of 9014 psia; the other well (green) is set to produce oil from the bottom layer with a
production target of 20000 stb/day and BHP limit of 1000 psia.

• Grid: 10 x 10 x 3 cells;
• Computation domain: 10000 ft x 10000 ft x 100 ft;
• Thickness of each layer: 20 ft, 30 ft, 50ft;
• The reservoir is initially undersaturated;
• Constant porosity of 0.3 throughout all 300 cells;
• The absolute permeability are 500 mD, 50 mD and

200 mD in the top, middle and bottem layers for all
x, y and z directions.
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4 . D a t a A s s i m i l a t i o n F r a m e w o r k  

Parameterization of Relative Permeability Curve

• The ground truths of relative permeability curves (Krw, Krow, Krg, Krog) are shown below.
Here, we assume the Krg curve is unknown, which is to be learned by data assimilation.

• Corey-model is used for the approximation of gas relative permeability (Krg) curve:
௥௚ܭ ൌ ሺ	௠௔௫	௥௚,ܭ

ௌ೒ିௌ೒೎
ଵିௌ೚ೝିௌೢ೎ିௌ೒೎

ሻே೒. For convenience, we set ௚ܵ௖ ൌ ܵ௢௥ ൌ 0 as they

exactly are. Three variables ܵ௪௖, ௚ܰ and ௥௚,௠௔௫ܭ are used for the parameterization.
• Latin Hypercube Sampling (LHS) method are used for sampling ܵ௪௖, ௚ܰ and .௥௚,௠௔௫ܭ

ܵ௪௖ ~ [0.05, 0.15], ௚ܰ ~ [1, 6] and ௥௚,௠௔௫ܭ ~ [0.9, 1].
• The commonly used Corey-model cannot accurately describe the true Krg curve (red). Here,

we assume a baseline Krg curve (black) to be modelled.

0.0 0.2 0.4 0.6 0.8 1.0
Water/ Gas Saturation

0.0

0.2

0.4

0.6

0.8

1.0

K
r

Krw
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Conclusions and Discussion

 Machine learning (ML) and data analytics have been 
successful in solving many technical challenges. 

 ML significantly accelerates digital rock image 
segmentation and flow property estimation.

 ML and data assimilation can be combined to match both 
the observations (e.g., saturation) and intermediate, hidden 
variables (e.g., kr). 

 How we use them to identify and solve the big questions in 
subsurface engineering? 
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Thank You !
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