Concrete Thermal Energy Storage Enabling Flexible Operation without Coal Plant Cycling

10 MWh-e Pilot Plant at Plant Gaston

Scott Hume
Principal Technical Leader

2021 Crosscutting Research and Advanced Energy Systems Project Review Meeting

May 11, 2021

DE-FE0031761
Acknowledgement and Disclaimer

Acknowledgement
This material is based upon work supported by the Department of Energy under DE-FE0031761.

Disclaimer
"This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."
Agenda

- Background
 - Storage and TES
 - Material Testing
- CTES Pilot Plant
 - Objectives and Team
 - Operation
 - Anticipated Performance
 - TES Design
 - Layout
 - Construction
- Q&A
Project Background
Background – Energy Storage Challenge

- Intermittent renewables are driving thermal plants to provide grid support causing:
 - Damage from cycling
 - Shorter lifetimes, higher emissions per kWh, and lower profitability

- If energy can be stored:
 - Plants can operate during low/negative pricing periods without exporting power
 - Batteries can be used; however, the cost of storage is high at $1300–2100/kW for a 4-hour system*; footprint and safety are also issues
 - Longer duration (e.g., 10+ hour storage) is also a challenge for batteries

Potential TES Applications

- Nuclear unit
- Solar PV, wind
- Concentrated solar
- Gas unit
- Steam
to constant heat
- Intermittent electricity heat
- TES
- Steams to constant electricity
- Flue gas to constant steam
- ~1% per day thermal losses
- No cycling degradation
- Grid services
- Steam on demand
- Steam/sCO₂ cycle
- 24/7 demand
- Industrial heating load
- CO₂
- 24/7 demand
- ~1% per day thermal losses
- No cycling degradation
Why Concrete?

- Potential low-cost TES system
- Solid ‘thermocline’ structure used to store thermal energy
- Low-cost material ~$68/tonne
- Can be easily cast into any shape

- Steam tubes embedded into concrete monoliths – conductive heat transfer
- No moving parts
- Modular system (41’ [12.5 m])
- Road/rail transportable

Very durable – see 2000-year old Pantheon in Rome, built of concrete!

3-block, flue gas-heated testing modules

Stackable and scalable

10 MWh-e scale pilot concept
Concrete Material Investigations

- High temperature testing carried out by Storworks and EPRI to verify strength and thermal properties for multiple concrete recipes
- Multiple samples were:
 - soaked at 600°C for up to 5000h
 - cycled 1500 times between 400-600°C
- Properties tested throughout
- Parallel flow stability tested
- Pilot plant designed
Concrete TES Pilot
Project Objectives

“Demonstrate concrete thermal energy storage (CTES) integration with coal power plant to enable low-cost energy storage that will eliminate the need for excessive operational flexibility”

How to achieve this?
Design, construct and test a nominal 10 MWh-e CTES pilot plant at the Alabama Power’s Plant Gaston facility and conduct extensive testing of the system using supercritical steam heating and high-pressure steam generation

CTES thermohydraulic model validation and operating experience
Project Team

Prime
- Electric Power Research Institute, Inc. (EPRI)
 - Scott Hume (PI), Dr. Andrew Maxson, George Booras

Sub-Contractors
- Storworks Power (Bright Energy)
 - Mike Matson, Cully Little, John Kreuder
- Southern Company
 - Josh Barron, Scotty Westbrook (site)
- United E&C (formally AECOM)
 - Steven Mastrangelo, John Kulbaga
High Level Details

- 10 MWh-e scale (>30 MWh-th)
- Location – Plant Gaston
- Details (per block)
 - 0.24 MWh-e => 42 total needed
 - 7 m³, 20 tonnes
 - 30”x 36”x 41’ (road/rail transport)
- TES Assembly
 - Arrangement: 7 high, 6 modules wide
 - Insulated/Cladding similar to HRSG
 - Overall size 20’ tall, 22’ wide, 42’ long

Supercritical steam source – representative of full scale
CTES Pilot Plant – Charging

Supercritical steam condensed, cooled and stored
CTES Pilot Plant – Discharging

Generated steam measured and disposed
Anticipated Performance

- Supercritical steam heats TES, cooling to high pressure condensate
- For discharge, lower pressure and temperature steam generated
- Effective ‘Round Trip Efficiency’ is the lost work potential
Protecting the CTES foundation

- Finite element conduction model showed extensive thermal energy transmission to foundation
- Actively cooled blocks designed to intercept the heat conduction, limiting the maximum foundation temperature to <75°C (167°F)
CTES Structural Aspects

- Original design used column stacks
- For seismic structural requirements, a brick wall approach was introduced
- 6 ‘half blocks’ needed
- 1” gap between adjacent blocks
- Cooling blocks extended to increase stability
Cooling Block Structural Design

- Cooling block undergoes substantial temperature gradient during operation
- Block tendency to ‘bow’
- Rebar used to hold block down to avoid uneven forces on the center of the TES modules

\[T = 600^\circ C \]

\[T < 75^\circ C \]
Detailed Design

- 76 documents produced
 - Process
 - Mechanical
 - Piping
 - Electrical
 - Instrumentation and Control
 - Specifications and Lists
- Some redesign carried out for:
 - Steam interface relocated
 - Reduced piping costs (at TES and condensate lines)
Pilot Plant Layout

- Compact design next to Unit 5 SCR
- Two main foundation pads
 - Main TES blocks, cooling fan
 - Balance of plant (condensate cooler, water tank, nitrogen blanketing, feedwater pump)
- 800 ft of 4” P91 steam pipework needed
- Local DCS with feedback to Unit 5
- Convenient access to power and boiler water
Construction Progress

- Long lead item procurement started
- Foundation scope contacted
- TES blocks 100% manufactured
- Cooling blocks underway

Commissioning expected by the end of 2021, testing 2022
Special thanks to Steven Markovich for his support during this endeavor!
Together...Shaping the Future of Electricity