
Development and Commercialization of an IDAES-Based Power Plant

Performance Monitoring and Optimization System

DOE FY2020 Phase I Release 2 SBIR Topic 25(b)

Award Number: DE-SC0020794

By

Dr. Rodney R. Gay
MapEx Software, Inc.

RodneyGay@PowerPlantPerformance.com

SBIR Project Overview

• Introduction
• IDAES (Institute for the Design of Advanced Energy Systems)
• Open-source computational platform.
• Extensive modeling environment for power plant and process applications.
• Equation-oriented analytics
• Supports dynamic analysis and optimization.
• IDAES is ideally suited for the energy-system modeling challenges of the future

• Problem Identification:
• Building IDAES models requires IDAES-specific expertise
• No user interface to support IDAES model building
• IDAES modeling is implemented via Python-language programs.
• Many process-system engineers are not familiar with Python.

• Solution:
• Develop a desktop software application to support IDAES users.
• Implement a flowsheet-based, graphical-user-interface.
• Eliminate the need for user to write Python programs.
• Make IDAES easier to use.

Software Concept

• User builds model using flowsheet GUI.

• Software creates the Python code needed to run the IDAES analysis.

• Software runs analysis and retrieves results for display on flowsheet.

User Experience

• User Interacts with the software via the flowsheet Graphical
User Interface (GUI)

• Open an existing model or to create a new model

• Add/delete equipment icons (unit-models)

• Add/delete streams (arcs) connecting unit models

• Enter input data via dialogs assessed from flowsheet

• Run Analysis
• Software generates IDAES Python code file
• IDAES analysis runs and generates results

• Results are displayed on flowsheet

• Save model for future access

Model-Controller-View Software Design

• The Model
• Manages the data of the application
• Implements the IDAES analysis

• Receives user input from the Controller

• Model does not communicate directly with the View.

• The View
• Renders a graphical (GUI) presentation of the model data.
• Handles interactions with the software user

• View is independent of the Model.

• The same View component is used for the hybrid analytics system
being developed in DOE project DE-FE00031753.

• The Controller
• Responds to the user input from the View and performs

interactions on the data model objects
• The Controller receives the input, optionally validates it, and then

passes the input to the Model

Model-View-Controller Implementation

Power Plant
Measured Data

MODEL

• Controller communicates with model data and
flowsheet GUI.

• Controller enforces rules for
• Adding/deleting flowsheet unit-models
• Adding and connecting arcs (streams).
• Entering data.
• Displaying results

Model Data

vars

cycles

equipments

powerplants

XML Model File

VIEW

CONTROLLER

• User builds/runs MapEx model
using the flowsheet GUI.

• Data can be entered using
dialogs for unit-models and flow
streams (arcs)

• Displays calculated results
• Flowsheet graphical information

is saved in XML file.

• Stores all data.
• Model generates Python code

and runs IDAES analysis
• Retrieves results from IDAES
• Writes results to data stores
• Supports data acquisition
• Stores data in XML file

IDAES
Platform

Build and Run an IDAES Model

1. Construct flowsheet representation of the model
a) Add equipment icons to flowsheet

1. Drag selected equipment icon onto flowsheet
2. Give the equipment a name

b) Add flow streams between equipment icons
1. Drag cursor from source equipment to target equipment
2. Specify the source port and target port
3. Give the stream a name

2. Enter/Edit Input Data
a) Double-click on equipment to view its input/output variables
b) Edit data for each variable by right-clicking “edit”

3. Click: Run Analysis
a) Software generates Python code file representing the model and its data
b) Open and run the file in your Python development environment (Idle or Spyder)
c) Running and retrieving results will be automated in Phase II

Build Flowsheet Model of a Power Plant Cycle
• Create a new IDAES (cycle) model

• Input names of Model, Plant and Cycle

• Add unit models
• Drag Icons onto Flowsheet

Edit Input Data (Outlet Pressure) for Turbine Stage

Python variable name is outlet[:].pressure

Some Inputs (property_package) are strings

IDAES Input is: m.fs.prop_water

Fix/Unfix Variable Values

• The user can choose to how
the input Value is used.
• fix – set the input value of the

variable to the Value

• unfix – leave the value of the
variable unspecified, free to
be determined by the analysis

• value – input an initial value

Fix Multiple Inputs for HPturb

• Set input values for a sufficient number of
input variables to enable prediction of
HPturb power and outlet enthalpy.

• Fix values of
• efficiency
• inlet enthalpy
• Inlet flow
• Inlet pressure
• outlet pressure

• At this point the analysis is ready to run!

Add Splitter to the Cycle
• Add a Separator equipment icon to cycle and name it HPIPSplit

• Click on HPturb, then drag stream to HpLpSplit

• Choose ports at stream inlet and outlet

• Give the stream a name

Generate IDAES Python Code
• Add LPturb and HTX equipment icons to cycle and draw flow streams

• Click “Run Analysis”

• Python code file representing the current flowsheet model is generated
• Default name is: CycleName_PythonCode.py

• Analysis does not yet run automatically
• Load file into Spyder (or your chosen Python development environment) to run manually

Python Code File

• Software creates a file containing Python code to run the flowsheet cycle.

• Diagram below shows Python code to:
• Add Boiler and Drum unit-model and specify optional inputs

• Add connecting Arcs (flow streams) between Boiler and Drum

Manually Open and Run Python File
• Use Spyder to open the file: C:\IDAES\CycleName_PythonCode.py

• Click “Run”

• Screen below shows the model and calculated results in Spyder

Review Calculated Results (Boiler)

Example: Model of a Coal-Fired-Power-Plant

Boiler Cycle Steam Cycle

Model Data

• Model data is Hierarchical

Model Data

vars

cycles

equipments

powerplants

Python Code File

The IDAES Python code file includes up to ten blocks of coding:
1. Import Python-IDAES-Pyomo Environment
2. Create Flowsheet and Pyomo Model
3. Add Unit Models
4. Add Arcs Connecting Unit Models
5. Set Model Parameters, Fix Variables and Initial Guesses
6. Add Custom User Variables/Constraints/Expressions
7. Initialize Unit Models
8. Solve Pyomo Model
9. Define Outputs
10. Write Results

IDAES Environment:
Escalante Power Plant Model

plant.py

boiler.py steam_cycle.py

Drum
Downcomer
WaterwallSection
WaterFlash
BoilerSurrogate
HeatExchanger
SteamHeater
HeatExchanger3Streams
WaterPipe

unit_models

Mixer
HeatExchanger
PressureChanger
MomentumMixingType
Heater

TurbineMultistage
FWH0D
SteamValve

coreflowsheets power_generation

power_generation

iapws95

properties

flue_gas_ideal

generic_models

unit_models generic_models

pandas pyomonumpy

Shaded boxes are power-generation related
methods of the IDAES framework.
Flowsheet application does not change these.

MapEx flowsheet application
generates power-plant python
modeling files:
plant.py
boiler.py
steam_cycle.py

unit_models

Mixer
HeatExchanger
PressureChanger
MomentumMixingType
Heater

TurbineMultistage
FWH0D
SteamValve

core power_generation

power_generation

iapws95

propertiesgeneric_models

unit_models generic_models

pandas pyomonumpy

1. Import Python-
IDAES Environment

• Python import statements are required for
IDAES classes

• Locations of IDAES files may change over time
• IDAES models from previous releases of IDAES

may not run with the current release
• Backward compatibility will be desired in the

future

2. Create Pyomo Model and Flowsheet

• Application creates a pyomo concrete model: m

• Then Inserts a flowsheet: fs

• Steam/water properties: iapws95

3. Add Unit Models to Flowsheet

• Unit Models:
• TurbineStage
• Separator
• HeatExchanger

• Default options are supported

4. Add Arcs to Flowsheet

• User-specified arc names are
used

• Application generates arcs
using IDEAS port names

5. Fix Values of IDAES Inputs

• All values fixed by the
user are fixed via Python
code statements

6. Define New Pyomo Variables and Constraints

• Add Variable TTD to Feedwater heater

add a variable for FWH1 TTD
m.fs.fwh1.ttd = pyo.Var(

m.fs.time,
initialize=10,
doc="TTD for FWH (condensing T - BFW exit T). (C)",

)
Add a constraint for FWH1 TTD

@m.fs.fwh1.Constraint(m.fs.time)
def set_ttd(b, t):

return (
b.condense.tube.properties_out[t].temperature
== b.condense.shell.properties_in[t].temperature_sat - b.ttd[t]

)

#Fix the value of TTD in the IDAES model
fwh1 inputs
m.fs.fwh1.ttd.fix(10)

7. Initialization

• Three possible methods
• Serial Decomposition
• Data from file
• Custom path from icon to icon

• Current software uses Sequential
Decomposition

• Other methods will be added soon

Summary
• Flowsheet based GUI is functional

• Desktop software provides flowsheet-based user interface for building IDAES models

• Flowsheet is graphical representation of the model (picture is worth a thousand words)

• Building IDAES models is easier and faster

• User is freed from writing Python code

• Some Desired Features Not Yet Implemented
• Application does not yet automatically run Python code or retrieve results

• Initialization needs to be improved

• User defined variables/constraints/expressions not yet implemented

• Various Modes of analysis will be implemented in Phase II
• Data Reconciliation

• Parameter Estimation

• Optimization

• Dynamic Predictive Analysis and Optimization

Acknowledgment:
"This material is based upon work supported by the Department of Energy Award Number DE-SC0020794."

Disclaimer:
"This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof."

