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Purpose of Project

Coal-Fired Power Generation Outlook

Coal-fired power plants (CFPPs) are critical to US power
generation infrastructure
* providing diversity at low cost
* hardening the grid against increased penetration of
intermittent generation sources

Coal-fired generating capacity is projected to decrease 36%
However, coal-fired generation is projected to decrease 18%
2018 to 2035 (AE2019, EIA)

Remaining CFPPs will have to:
operate more at part-load
be more flexible
be more efficient
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Program to build a platform for building Digital Twins (UKF + transient model) and Real-Time Optimizers (MPC)
estimates then optimizes heat rate at all conditions (target: 5% reduction in feed coal)
optimizes part-load to base-load transitions (target: 30% faster transitions)



Purpose of Project

Project Description

Program to develop model-based estimation and Program Deliverables
predictive control technology for transient « ExtanERE e T e
GE J\ optimization and estimation of CFPPs coal-fired power plants
Research r Program Objective: Deliver faster ramp rates, higher plant y 't';i?lgr{:[t:d MBEMPL
. efficiency, and reliability through transient estimation and gy
Duynamic model V v e * Hardware in the Loop setup
y optimization :
development for testing MBE-MPC
Model Based Estimation , Cooling technology
Model Predictive Control - D Anticipated Benefits of
Ty — g the Proposed Technology
GE . / § S + Heat rate improvements of
N/ v i
Power Yavavava IsY up to relative 5%
Condenser o SpEge
p * Flexibility improvements of
1 r . | Proposed Technology r ™ up to 30%
Coal-fired p%w;r plant i " « Reliability improvements
operation & design \ through power plant
Coal-fired power plant - - component health estimation
modeﬂing Model Predictive Fontroi Mcng-Based Estimation
Real-time optimization using Real-time estimation of plant
. / dynamic model of the plant states and health parameters

Relevant Prior Work ]\

« MPC-MBE design for IGCC
and CC power plants

* MPC for military aviation

Model Library
Dynamic models of CFPP components that can be
assembled and configured to represent existing US fleet

S

applications Technical Approach Technical Challenges
* MBE for military aviation * Reduced order dynamic models  + Model library to be able to
applications embedded in MBE based on represent the US installed
unscented Kalman filtering base coal-fired power plants
* Integrating the MBE with MPC « Model, MBE, MPC cohesive
for improved flexibility, integration
efficiency, and reliability
. J

Value: 800 MW plant 5%(relative) improvement in heat rate 2 $2.9M coal reduction/year



Current Status
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Program Activities

Project started in 2019 Q4 instead of 2019 Q3

022
1/Q2

Task 1: World Design and Simulation Engine for prediction/expectation task
Deliverable: Upated Project Management Plan
Deliverable: Updated Technology Maturation Plan
Deliverable: Final Project Report

Task 1: Project Management

/

Phase 1: Task 2: Generic Transient Model Develop €

2.1: Develop transient models of key components of coal-fired power plant from
existing steady-state performance models

2.2: Validation of transient model of the overall CFPP using site data and refine
component models (if necessary) to meet accuracy limits
Deliverable: Modeling methodology of key component models and validation
results
Milestone: Models available for key components of coal-fired power plants

Task 3: Transient Model-based Estimator Design (MBE)
3.1: Develop and test model-based estimator to estimate parameters of the coal-
fired power plant model
3.2: Validate MBE with site data at steady-state and transient conditions
Deliverable: Model-based estimation technology applied to a coal-fired power
plant to estimate parameters resulting in a digital twin CFPP model

Task 4: Model Predictive Control (MPC) Design

4.1: Develop and test MPC technology using the digital twin CFPP model to
optimize heat rate at steady state and ramp-rates at part-load conditions

4.2: Integrate and apply MPC and MBE technologies on the nominal CFPP model
Deliverable: integrate MBE and MPC solution to estimate states and control
operation of CFPP
Milestone: Model-based estimation and controls methodology and simulation
results using nominal CFPP model

Phase 2: Task 5: Deployment of Integrated Solution
5.1: Integrate MBE and MPC solution on the tuned digital twin model
5.2: Deployment of Integrated Solution on GE's EdgeOS platform
5.3: Hardware-in-loop (HIL) simulation to test different optimization formulations
Deliverable: Deployment process and optimization results of HIL studies
peformed on GE's Edge OS platform
Milestone: Integrated solution on the tuned digital twin model, deployment
\ process on GE's Edge OS platform and HIL results

Task 2: Reduced Order Model Library Generation
* Completed

Task 3: Unscented Kalman Filter (UKF) development
* Completed

Task 4: Model Predictive Control (MPC) platform development
e Library developed

* Reduced-order model embedded

* being tested

Task 5: Integrated HIL-like environment

* UKF is ready for real-time environment

* Communication bridge developed

* MPCis being transferred real-time environment

@ Denotes Milestone 'V Denotes Deliverable




Current Status

* Completed—Reduced-order-model component library development,
* This model will be used in the model-based-estimation and model-predictive-controller for the
transient optimization of the coal-fired power plant.

* Completed—Model-based-estimation (MBE) algorithm library development,
* Tested with example generic dynamic system models,
* MBE tested with the reduced order model of the representative plant,
* Ongoing—test MBE with high-fidelity model of the representative plant.
 Communication with high-fidelity model is established robustly
* Decision: test a subsystem (HP Superheaters first)
* Completed—Model predictive control (MPC) algorithm library development,
* Tested with example generic dynamic system model,
* Ongoing—test MPC with reduced order model of the representative plant.
* Reduced order model is now embedded
* Decision: 2x1 MPC will be tested first
* Ongoing: MPC I/O selection



Current Status

* Completed—High-fidelity model development (model for a representative plant) at base load,
* This model will represent the coal-fired power plant,
* Model calibrated for base-load levels,
* (Calibrated high-fidelity model for 100%->47% load levels,
* Next step— align reduced order models and the APROS model
* Air-preheaters are added
* Ongoing: add multiple injection zones to the boiler
* Industry validation—Reduced-order-model component library reviewed with GE Steam Power
domain experts,

* Next step—Productization options around the use of reduced-order-model component library.



Project Update

Reduced-order-model component library development

High-fidelity model will be

Reduced-order-model
will be used in
estimation and real-
time optimization

Reduced-order
Model - 1

Reduced-order
Model - 2

Estlmatlon Real Time ;

H : g-" = I Optimization Future
Sensor S SOIVGF Optimal
measurements Actuator
: Setpoints

Predictive
[models w&éﬁ@
\_ J

Model-based Estimator and Model Predictive Controller

O ——— *-*used for representing the
o CFPP
e
DE——
kN Hig; i:jd:l"ty Sensor
Embedded Embedded (represents plant) measurements

For faster ramps (flexibility), Better heat-rate (efficiency), and Diagnosis



Project Update

Reduced-order-model component library development

Simplified configuration of the representative CFPP Representative CFPP model in MATLAB/Simulink

e Created by connecting individual component models
from the library

:



Project Update

Example of Simplification to Obtain Reduced-Order Representations

A reduced-order drum model enables the model to Representative results from the drum model

be used in model-based estimation and * Captures the main dynamics
controls/optimization ¢ Computationally efficient
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Project Update

Reduced-Order-Model of the Representative Plant

A reduced-order overall model enables the model to be used in model-based estimation and controls/optimization
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Overall model runs >50x faster than real-time



Project Update
Model-based Estimation (MBE) Library Development

(

measurements

Integrated the reduced-order-model of the representative plant into MBE library

~
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Model-based Estimator and Model Predictive Controller

Model based estimator is
developed to work with
any embedded model
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Project Update

Model-based Estimation (MBE) Library Development

Technique
Extended Kalman Filter (EKF) i

* Non-linear propagation of mean
* Linear propagation of covariance - needs
online linearization of model x [

System Model

= First order approximation

Computation

Low

n+1 or 2n+1 model evaluations for numerical
linearization

n x nmatrix algebra

Y
Unscented Kalman Filter (UKF) fix) Moderate
 Non-linear propagation of sigma points n+2 or 2n+1 function evaluations
* No linearization required - lends itselfto oko nxnmatrix algebra
generic software implementation ;
* Fit Gaussian to propagated points ke
* Captures higher order moments ’\l
=1
b 4
Particle Filter (PF) fix) High
* Non-linear propagation of random points Many function evaluations
* Monte Carloapproximation of distribution particles = T accuracy computation
* Non-linear and/or non-Gaussian
X -
Nl

Extended Kalman Filter
EKF

Nonlinear model

mean of x4,

mean of x; P(Xier1)

p(xi)
Linearized model
X K41
* Mean computed by the nonlinear model
Unscented Kalman Filter
UKF
p(%) P(Xk+1)

Nonlinear model

S am—
st dev. of x;

Nonlinear model

Xi+1

Xk
Both mean and st. dev. computed from sigma points

Model-drop-in library for Unscented/Extended Kalman Filtering is ready in Matlab/Simulink

Integrated the reduced-order-model of the representative plant into MBE library

12



Project Update
Model-based Estimation (MBE) Library Development

Overall simulation MBE Tool
MBE +Ptant
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Library will easily work with reduced-order models of different plants

:



Project Update

Model-based Estimation (MBE) Library Development

Inputs to the tool: Spreadsheet to configure the MBE
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Project Update
Model-based Estimation (MBE) Library Development

Outcome of tool: All signals of reduced-order model can be analyzed

Output: total gross power
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Component health can be monitored
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Project Update

Model-based Estimation (MBE) Library Performance

Initial Conditions perturbed by 5%, noisy measurements
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Project Update

Model-based Estimation (MBE) Library Performance

Initial Conditions perturbed by 5%, noisy measurements

IP ST efficiency scaler
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Project Update

Model-based Estimation (MBE) Library Performance

Initial Conditions perturbed by 5%, noisy measurements

IP ST efficiency scaler Economizer HTC scaler LP preheater HTC scaler
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Project Update

Model-based Estimation (MBE) Library Performance

Initial Conditions perturbed by 5%, noisy measurements

Total gross power LP ST Torque
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Project Update

High-fidelity plant model development in APROS modeling software

This detailed high-fidelity model will
represent the real plant in the testing of MPC-
MBE algorithms

Plant Model in APROS calibrated for
TMCR/part load conditions except air
L preheaters being tuned, and multiple

combustor injection zones




Project Update
High-fidelity plant model development in APROS modeling software

LP ST model in APROS This detailed high-fidelity plant model will
, represent the real plant in the testing of MPC-
; 3 @ . Dt MBE algorithms

Plant Model in APROS calibrated for
TMCR/part load conditions except air
preheaters being tuned, and multiple
combustor injection zones

@

APROS Model Example: LP Steam Turbines —

Model development in APROS is completed for TMCR/part load conditions

Next step: Multiple combustor injection zones added to the model and compare baseline with
reduced order model

.




Preparing Project for Next Steps

Project Path:

e Year 1+: Individual modules completed: model library, model-based estimation, model
predictive control

e Year 2: Integration of the modules
e Year 3: Hardware-in-the-loop testing

Technology-to-Market Path:

e Follow-on with TRL5-TRL7 program to test at pilot-scale and customer sites — beta
deployment

e Follow GE-Steam-Power’s procedures to get to approval-to-quote status
e Potential new research: faster requisition of reduced-order models for given sites

e Potential new research: consideration of stochastic market conditions in MBE/MPC
technologies

22



Concluding Remarks

Program focuses on
developing:

Reduced-order models: for
representing CFPPs

Model-based estimation: for
assessing current status of a
CFPP

Model-predictive-controls: for
efficient/flexible operation of
CFPPs

High fidelity models: for
representing the actual CFPP

Developed technology will
support CFPPs to be :

* more efficient at and getting to
part-load

* more flexible

* more efficient

Next Steps/Challenges:

Integrate MPC and MBE
applications

Integration of overall
architecture and
demonstration on the
representative CFPP high-
fidelity plant model

Challenges for productization:

More rapid reduced-order-
model development for a
given CFPP
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