Mid-Duration Energy Storage (MDES) Benefits and Challenges

Scott Hume

Principal Technical Leader

3rd TMCES Workshop SwRI, August 10, 2021

Image: Second system
<th

Background

- EPRI's DER-VET used to perform cost-benefit assessment
- Cost and performance data for MDES technologies obtained from developers
- 6-, 8-, and 10-hour durations selected for analysis
- Obtained pricing data from 2020–2045 for:
 - Multiple U.S. system operators
 - An example European grid

Understanding the future value potential of MDES

www.der-vet.com

Energy Storage Technologies

Technology	Acronym
Thermal Energy Storage	TES
Gravitational Energy Storage	GES
Pumped Heat Energy Storage	PHES
Cryogenic Energy Storage	CES
Lithium-Ion Battery Storage	Li-Ion

Modeling Inputs

- Round-Trip Efficiency
- Capital Costs
- Operating Costs
- Startup Energy

(Total AC power generated / total AC energy consumed)(Anticipated costs for power [\$/kW] & energy [\$/kWh])(Dwell energy losses, maintenance, and augmentation)(Energy consumed during startup)

Use Cases

Base

 All technologies were run using the original pricing curves in each region for the 6-, 8-, and 10-hour duration cases (Li-ion batteries were also run at their prevalent 4-hour duration case)

Sensitivity Studies

- RTE was adjusted +/- 5% points
- Capital costs were adjusted +10% / -30%
- Energy prices were modified (mod) from their original (orig)

18 Cases per Technology per Hours of Duration

Pricing	Orig								
RTE	Base	Base	Base	High	High	High	Low	Low	Low
Costs	Base	High	Low	Base	High	Low	Base	High	Low
Pricing	Mod								
RTE	Base	Base	Base	High	High	High	Low	Low	Base
Costs	Base	High	Low	Base	High	Low	Base	High	Base

Significant number of use cases: 1728 total

How to Interpret the Results

If yearly revenue > revenue requirement, value is made

Example: Energy Time Shift Only Value

With the given projected energy prices only, there is no value

© 2021 Electric Power Research Institute, Inc. All rights reserved.

Time Shift + Ancillary Services Value

Adding ancillary services produces significant value

© 2021 Electric Power Research Institute, Inc. All rights reserved.

Capital Cost and Energy Price Sensitivity

Cost reductions alone do not yield a profit for energy only cases

www.epri.com

Changes to the energy price have the biggest impact on value

Missing Money with High Renewable Energy Prices

Region with significant amount of renewables, shows value

Summary

- Energy time shifting revenue alone yields a net loss
- Regions with more renewables had more revenue for energy storage
- At longer durations, value for non-battery energy storage, whose cost to add more duration is low, improved in comparison to Li-ion batteries
- When ancillary service prices were coupled with energy prices, the "stacked" revenue resulted in a profit, save for Li-ion batteries above 4 hours
- Best-case scenarios showed significant net revenue for non-battery energy storage even without ancillary services
- Adding ancillary services markets or tariff-based incentives will improve the economics for energy storage as would capacity payments
- Markets for system inertia and low-carbon generation could also add value

Together...Shaping the Future of Electricity