CO₂-Based Pumped-Thermal Energy Storage
Technical Overview & Status
Acknowledgments and disclaimers

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000996, and the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number DE-EE0008997.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The contributions of the program partners listed below are gratefully acknowledged:

- CDM Smith
- Liquid Ice Technologies
- Technical University of Vienna (TUW)
- University of Notre Dame
- Electric Power Research Institute
- Solex Thermal Sciences
- University of Cincinnati
- Westinghouse Electric Corporation
PTES in a nutshell

Electrically-driven heat pump

Charging cycle
- Heat Pump Cycle
 - COP = \(\frac{Q_h}{Echg} \)
 - Ideal COP = \(\frac{1}{1-T_c/Th} \)

Generating cycle
- RTE = \(\frac{Egen}{Echg} \)
 - Power Cycle Efficiency = \(\frac{Egen}{Qh} \)
 - Ideal efficiency = \(1-T_c/Th \)

Overall Process
- RTE = \(\frac{Egen}{Echg} \) = COP x Efficiency

Ideal cycle RTE = COP_{Carnot} x \eta_{Carnot} = 100\%

Non-ideal processes result in RTE ~60\%, even at modest temperature ratio

Electric generation heat engine

Generating cycle
- Electric generation
 - Pump
 - Turbine
 - \(Qh \)

**Power Cycle Efficiency = \(\frac{Egen}{Qh} \) **
Cycles on a PH diagram

HTX heat transfer is supercritical - sensible enthalpy transfer interaction with HTR

LTX is subcritical – condensation and evaporation - ~ constant temperature interaction with LTR
ARPA-E DAYS Program – PTES lab system

~200 kW\textsubscript{th} system, including both charging and generating cycles

Operating for ~ 6 months, repeated charge/generate cycles

Basic cycle and thermal reservoir experience and data

Operation and control methodology development and optimization
Lab-system configuration – Charge cycle
Lab-system configuration – Generate cycle
Work in progress & next steps

- HTR – Sand-based reservoir installation
- HTX – Fluidized bed heat exchanger
- IOC – Ice-on-coil LTR
- Axial compressor (100+ MW)
- 25 MW / 8-hour system preliminary design
Contact: Timothy Held, Ph.D. (CTO) theld@echogen.com