

The Role of Energy Storage in Helping California Meet the State's Future Zero Carbon Energy Goals

Mike Gravely Energy Research and Development Division <u>Mike.Gravely@energy.ca.gov</u> (916) 704-4339

California Energy Commission Major Research Programs

- Electric Program Investment Charge (EPIC)—Administered by the CPUC
 - Ratepayer-funded program to benefit ratepayers
 - Administered by the Energy Commission and three Investor-Owned Utilities (PG&E, SCE, and SDG&E)
 - Energy Commission Program \sim \$130 M/year for research
 - In 2020 the EPIC Program was extended by the CPUC for an additional 10 years

CALIFORNIA'S INVESTMENT IN CLEAN ENERGY INNOVATION

EPIC is California's premier public interest research program investing over \$130 million annually to unleash innovation.

Entrepreneurial Ecosystem \$143 million invested

Through EPIC, the CEC is building a world-class

ecosystem supporting clean energy entrepreneurship.

Grid Decarbonization & Decentralization \$154 million invested Improving the cost competitiveness and performance of key technologies.

Resiliency & Safety \$106 million invested

Helping communities, businesses, and public agencies build a safer, more resilient energy system.

Industrial & Agricultural Innovation \$113 million invested Scaling specialized technology solutions to drive energy efficiency without compromising production.

Building Decarbonization \$170 million invested

Improving the affordability, health, and comfort of buildings.

Transportation Electrification \$33 million invested

Supporting advances that reduce the cost of electric vehicle ownership and support the grid.

*Total investment, 2012-2019

California Energy Commission has a Long History of Energy Storage Research

A Decade of Microgrid Research

Deploying the Largest Number of Installed Microgrids (Energy Storage is a Key Component of Each Microgrid)

- 45 microgrids | \$136M invested | \$101M match funding
 - Increasing resiliency
 - Track energy storage performance, reliability and safety
 - Learning best approaches to integrating multiple resources
 - Sharing lessons learned and best practices
 - Driving down costs and establishing deployment norms

Diverse Combination of Microgrid Demonstration Projects by End Use

Ports

Critical Facilities

Medical Center

Communities

Industrial

Distribution Center

Fire Stations

Waste Water Treatment Plant

City Hall, Police HQ, and **Community Centers**

Airport

Growing Need for Energy Storage in California (CPUC Integrated Resource Plan)

Table 5. New Resource Buildout of 2019-2020 RSP (Cumulative MW)

Resource Type	2020	2021	2022	2023	2024	2026	2030
Wind	-	34	1,950	1,950	2,737	2,737	2,837
Wind on New Out-of-State	-	-	-	-	-	-	606
Transmission							
Utility-Scale Solar	2,000	4,000	6,000	8,000	8,000	8,000	11,017
Battery Storage	152	2,453	2,453	2,453	3,299	6,127	8,873
Pumped (long-duration)	-	-	-	-	-	973	973
Storage							
Shed Demand Response	-	222	222	222	222	222	222
Natural Gas Capacity Not	-	-	-	-	-	-	(30)
Retained							

Planning for California's SB-100 Goals Latest Modeling Results: System Resource Adequacy

Demand: High Electrification; Resource Options: All; Year: 2045

Planning for California's SB-100 Goals To Achieve Clean Energy

- California Energy Commission has invested in a diverse portfolio of energy storage technologies
 - Short- and long-term energy storage technologies
 - Lithium-Ion
 - Advanced battery chemistries
 - Flow batteries
 - Flywheel systems
 - Thermal energy storage
 - Advanced pumped hydro
 - Compress air energy storage
 - Green hydrogen

2020 is a Pivotal Year for Critical Energy Storage Research

- Over \$100 Million Invested in Energy Storage in 2020 (EPIC Funds and Awardee Provided Match Funding)
- Evaluating the Performance of Lithium Ion and Non-Lithium-Ion Energy Storage Technologies in a Variety of Microgrid Applications
- Supporting New and Emerging non-Lithium-Ion Technologies
- Field Demonstrations of non-Lithium Ion Longer Duration Energy Storage
- Validating Capability of Second-Life Batteries to Cost-Effectively Integrate Solar Power for Small-Medium Commercial Building Applications
- Assessing Long-duration Energy Storage Deployment Scenarios to Meet California's Energy Goals

UniEnergy Technologies, LLC

T2M Gløbal

Technology & Investment Solutions, LLC

Title-24 Building Standards Residential Scale Systems

- +				
	Powerwall	PWRcell 9	eco 10	RESU 10H / StorEdge
Energy Capacity	13.5 kWh	8.6 kWh	10.5 kWh	9.8 kWh
Power Capacity	5 kW	5 kW	7 kW	5 kW
Claimed Efficiency	90 %	96 %	86 %	87 %
Inverter	Tesla	Pika	Outback Power	SolarEdge
Battery	Tesla / Panasonic	Panasonic	Murata / Sony	LG Chem
Integrator	Tesla	Generac	sonnen	Sunrun, etc.
Controller	Tesla	Generac, neurio	sonnen	SolarEdge, etc.

EPC-16-079 EPRI - Impact Assessment & Secure Implementation of California Rule 21 Phase 3 Smart Inverter Functions to Support High PV Penetration

What is Long Duration Storage?

P. Albertus, J. Manser, and S. Litzelman, "Long-Duration Electricity Storage Applications, Economics and Technologies," Joule, vol. 4,

Department of Energy Long-Duration Energy Storage Workshop March 2021, "BIG" Energy Storage: Priorities and Pathways to Long-Duration Energy Storage

Assessing Long-duration Energy Storage Deployment Scenarios to Meet California's Energy Goals

- Will consider a variety of specific energy technologies in the categories of storage, generation, and grid structure
- Will utilize cost modeling to forecast the future costs of long duration energy storage

- Will develop a new modeling toolkit to assess the long duration energy storage needs of California.
- Will work with energy storage and microgrid experts from UCSD and long duration energy storage system developers from Form Energy

Future Energy Storage Grant Opportunities

- California Sustainable Energy Entrepreneur Development (CalSEED)
 - Provided small-scale funding that gives entrepreneurs starting capital to develop their ideas into proof-of-concepts and early prototypes.
- Bringing Rapid Innovation Development to Green Energy (BRIDGE)
 - Provides support to promising technologies and companies that have previously received federal or CEC funding.

• Realizing Accelerated Manufacturing and Production for Clean Energy Technologies (RAMP)

 Supports clean energy entrepreneurs transition innovative technologies from prototype development to initial production scale-up. Helps companies advance the Manufacturing Readiness Level of their technology to the Low-Rate Initial Production (LRIP) stage.

• Accelerating Tech Transfer

• Seeks to facilitate the accelerated transfer of energy technology related intellectual property (IP) from institutions, such as universities and laboratories, to private entities focused on commercialization.

Advanced Battery Manufacturing

• Supports the scale up of advanced battery manufacturing in California focusing on advanced technologies such as Lithium-metal batteries at the component, cell, and battery pack levels.

Cost Share

• Provides cost share to California-based entities to leverage private, non-profit, and federal funding opportunities for projects consistent with the goals and objectives of EPIC.

- Optimizing Long-Duration Energy Storage to Improve Grid Resiliency and Reliability in Under-resourced Communities (New Solicitation to be Released in Fall of 2021)
 - Demonstrate increased resiliency and reliability of clean long-duration energystorage systems to critical facilities in under-resourced communities.
 - Demonstrate resiliency during grid outages and public safety power shutoff (PSPS) events.
 - Couple smart inverters, energy management systems, or a microgrid controller with storage, and document performance needs for critical loads while minimizing cost.
 - Clean alternative to back-up diesel generators and ability to "ride out" PSPS events and other grid power-loss events.
 - Operate during grid outages that last 24-36 hours.

- California FY 2021/2022 Budget Clean Energy Investments
 - Incentives for long-duration storage (California Energy Commission)—Current budget \$340 M
 - Green hydrogen: power plant demonstration and grants to scale electrolyzers and end uses (California Energy Commission)—Current budget \$100 M
 - Industrial decarbonization (California Energy Commission)—Current budget \$210 M
 - Food Production Investment Program (California Energy Commission)—Current budget \$85 M

NOTE: Final funding allocations are pending actions by the California State Legislature

Open Discussion