

Compressed Air Energy Storage (CAES)

3rd Thermal-Mechanical-Chemical Energy Storage Workshop

August 2021

https://www.siemens-energy.com/global/en/offerings/storage-solutions.html

Compressed Air Energy Storage Introduction

Overview

- Improves utilization of renewable energy resources by absorbing energy that might otherwise be curtailed
- Increases grid capacity utilization, balancing, and reserve services
- GW-hr energy storage for supporting base load generators and load management
- Includes: Above ground systems, plant engineering, procurement, construction, installation, start-up services, long term service support

Client Value Proposition

- Long duration storage
- Energy and ancillary services with low fuel consumption
- Excellent load-following capacity and part-load efficiency
- · High ramp rates and fast start-up
- Independent operation of compression and expansion
- Significant plant scope available from single source

Cycle flexibility and long storage duration – key to grid scale energy storage offerings

APPLICATIONS

- Regulation & ancillary services
- Transmission optimization
- Avoidance of renewable curtailment

Compressed Air Energy Storage Simple Concept - cut gas turbine into two pieces

Precise air flow management allows for wide operating range (16 - 160 MW)

"Air Battery" – Time Shift Load Absorbing Compressor from Power Generating Turbine

Compressed Air Energy Storage Reference - McIntosh CAES Plant

Application: CAES Country: USA Commercial Operation Year: 1991 Client: PowerSouth Energy Cooperative

Scope of Supply

CAES

- Expander: 154.7 kg/s,110 MW
- Compressor: 89.5 kg/s, 49 MW
- Storage: Salt Dome @ 540,000 m³
- Pressure Range: 45-75 bara

Siemens overall

- 2x W501F gas turbines
- 2x V84.2 gas turbines
- T3000 plant-wide control system
- Fuel gas booster compressors
- RG3 brushless excitation system
- D3000 vibration monitoring package
- D4 static excitation

Project Background

- PowerSouth had issues meeting electricity demands during peak usage periods
- Operating smoothly, economically and reliably for nearly 30 years
- Plant reliability rate now at 98.9%

Client Benefit

- Quick start capability during critical power outages
- Cost-effective power and a strong backup resource
- Operate their base-load plants more efficiently
- Control of entire plant from a single interface

Compressed Air Energy Storage Cycle Schematic – Simultaneous Operating Modes

Compressed Air Energy Storage Grid Scale Interruptible, Controllable Load Absorption

- Six-stage Integrally Geared LP
 Compressor
- Two-stage Inline Type HP
 Compressor
- Double-ended Drive 2-pole
 Electric Motor

DATUM - over 1,200 installed

- Water-cooled heat exchangers
- Up to 125 MW
- 30% turndown & 30% ramp rate per minute
- 4 minutes from offline to full load
- Interruptible demand response

STC-GV - over 2,000 installed

Efficient and Flexible Demand Response with GW-hrs of Energy Storage

Compressed Air Energy Storage Equipment Configured to Operate as a "Super Peaker"

SST-800 - over 130 installed

SGT-800 - over 350 installed

- 160MW and 140MW max design output
- Less 20MW min generation output.
- VHP and HP Expander derived from Siemens SST-800 steam turbine
- LP Expander with DLE combustion system derived from Siemens SGT-800 gas turbine
- Double-ended Drive 2-pole Electric Generator
- 20% ramp rate per minute
- Full generation in 10 minutes
- 90% effective recuperator with duct burner and Selective Catalytic Reduction system
- Up to 50% H2 co-firing; path to 100%

Unmatched Operating Range Provides Needed Flexibility to Balance Complicated Generation Mix

SIEMENS

energy

LP Expander derived from SGT-800 Gas Turbine (SXT-800)

Advantages of SXT-800 CAES Solution

- Large installed base and operating experience with the combustion and high-temperature turbine hardware
- State-of-the-art emissions achievable with DLE (no water injection)
- Performance improvement of the expander system due to higher turbine inlet temperature
- Smaller air piping for the same power output level leading to lower cost in the plant and potentially in the cavern and wellbore
- Experience of service personnel in installation, commissioning, and long-term maintenance of the SGT-800 hardware
- Significant size, experience, and capability of the SGT-800 core unit engineering teams to help solve any problems that may arise in the field

Bailie | SE GP I PR IS **9** Unrestricted © Siemens Energy, 2021

Compressed Air Energy Storage Expander Cycle Flexibility

Performance demonstrates wide operating range

Power	Heat Rate	System Flow	Fuel Usage*
MW	kJ/kWh	kg/s	kg/s
160	4067	144	3.9
105	4095	103	2.5
85	4120	91	2.1
65	4157	76	1.6
50	4199	67	1.2
35	4257	52	0.9
20	4440	40	0.5
			*natural gas lower heating value

Near Flat Heat Rate, High Turndown, Rapid Regulation Response Allows An Unmatched Balancing Asset

Siemens Hydrogen Gas Turbines for our sustainable future The mission is to burn 100% hydrogen

DLE burner 📃 WLE burner

August 2021

Diffusion burner with unabated NOx emissions

Heavy-duty gas turbines

ines 🧼 Industrial gas turbines

Aeroderivative gas turbines

1 ISO, Base Load, Natural Gas; Version 3.4, July 2020

Bailie | SE GP I PR IS **11** Unrestricted © Siemens Energy, 2021

EU-Turbines Commitment to drive the transition towards a decarbonized Energy Mix

Hydrogen co-firing commitment from EU-Turbines

In January 2019, Siemens signed a **commitment on** H_2 **co-firing** in gas turbines at the #PowerTheEU summit

Today: Operation with $3 - 5\% H_2$ content (\rightarrow already achieved for all new GT models)

2020: Operation with **20%** H_2 content (\rightarrow already achieved for most GT models)

2030: Commercial availability of turbines for **100%** H_2 (\rightarrow already achieved for AD-GTs, R&D and implementation plans in place to cover more GT models until 2030)

https://powertheeu.eu/

Siemens R&D activities to increase hydrogen capabilities

Siemens lately invested in in-house H₂ testing capabilities at Clean Energy Center in Berlin – Single burner tests at engine conditions

Engine Tests for SGT-600/700/800 running on H_2 in DLE (dry low emissions) combustion systems has resulted in sales release of 60/55/50 vol- H_2 respectively

Ongoing development to increase capabilities of our engines

August 2021

Salt formations – North America

- Pressure holding capability is our main question. Can be sized to whatever client desires. Size equates to MW-hrs of storage.
- Rule of thumb is 0.8psi max cavern pressure per ft of depth to top of salt. So, 3200 ft to top of salt, then 2560 psi max holding pressure.
- Domal salt preferred over salt beds. Typically, domal can handle 160MW 3-stage. Salt beds at shallower depth, so 140MW 2-stage.
- Depleted gas fields question of remaining entrained HCs.

Compressed Air Energy Storage Commercial Considerations

CAPEX equates to three (3) major components

- **Power Island** = [\$400-600 / kW]
 - Numerous configurations w/ train quantities and compression sizing
- Balance of Plant (BoP) / Engineering, Procurement & Construction (EPC)
 = [\$425-625 / kW]
 - Location, labor rates, building/site permitting, transmission interconnection, fuel pipeline, construction contingency
- **Reservoir** = [\$50-150 / kW]
 - Salt cavern, aquifer, or hard rock mine
 - Greenfield vs. existing
 - Declines in \$/kW-hr as cavern size increases

Compressed Air Energy Storage CAPEX Surface Plant Configurator

1x1 Power Train		Amount (S
CAES Core Equipment		
160MW Expansion train	\$ 55	
105 MW Compression train*	\$ 35	
Balance of Plant (BoP)		
Construction		
Subtotal - 1x1 Power Train		
Each additional 1x1		
CAES Core Equipment		
160 MW Expansion train	\$ 50	
105 MW Compression train*	\$ 30	
Balance of Plant (BoP)		
Construction		
Subtotal - additional 1x1		

(\$MM USD) 90	
30	
75	
195	Notes: • CAES core +/-10% • BoP +/-15% • Construction +/-20%
80	 BoP and Construction ~50/50% cost split between comp & exp 140MW equivalent is ~7.5% less cost for CAES Core and ~5% less cost for BoP and Construction. Typical cavern development range = \$35 - 65 MM Each 1x1 = ~5 acres
25	
65	
170	Bailie SE GP PR IS 15

August 2021

* Assumes similar max mass flow for compression as expansion. Compression can be sized to lower or higher mass flow.

Bailie | SE GP I PR IS **15** Unrestricted © Siemens Energy, 2021

Energy (Storage) Transformation – CAES + H2

Bailie | SE GP I PR IS **16** Unrestricted © Siemens Energy, 2021

Contact page

Published by Siemens Energy

Bobby Bailie

Business Development Director – Energy Storage Siemens Energy | Industrial Applications

15375 Memorial Drive, Ste. 600 Houston, TX 77079, USA Mobile: +1 281 513-3878

robert.bailie@siemens-energy.com

siemens-energy.com

Bailie | SE GP I PR IS **17** Unrestricted © Siemens Energy, 2021