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SwRI is an Applied  Research & 
Development Company
• Founded in 1947, based in San Antonio, 

Texas

• 501 (c)(3) nonprofit corporation
• Internal research
• New laboratories

• ~$680M annual revenue from contract 
work for industry and government clients

• Over 2,700 employees 

• 1,500-acre facility; 2.3 million square feet 
of laboratories & offices

• Client-centric IP policy

• Machinery Department: 75 employees, 5 
labs with turbomachinery trains up to 14 
MW
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Large-Scale Long-Duration Energy Storage is 
Needed to Enable Deep Renewable 
Penetration
• Variability, demand mismatch of wind 

and solar
• Typical hourly, daily, seasonal variability is 

~50-100% of rated power

• Studies show that storage on the order 
of ~1x daily energy production may be 
needed1

• Storage at renewable plant or 
baseload plant absorbs 
ramps/transients

• The storage need for a large city 
ranges from ~ 25 GWh (4 hours 
storage in Phoenix) - 840 GWh (daily 
consumption in Tokyo)

Image Source: CAISO 2019

1-35 of the world’s largest 
pumped hydro system…

…or 23-763 of these 
molten salt tanks

1Solomon, A.A. et al, 2017.

Image Source: EPRI 2018

Image Source: Pfenninger 2017
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Energy Storage Use Cases

• Many potential use cases for many 
markets
• Arbitrage
• Demand response
• Peaker
• Spinning reserve
• Transmission & distribution upgrade deferrals
• Behind-the-meter peak shaving
• Reduced O&M for conventional generators

• Combinations of the above
• Many unknowns: future grid mix, 

regulatory, different markets, permitting, 
carbon/emission pricing, etc.

Voss et al, 2021
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Storage Cost Impacts to Renewable Power

Image Source: U.S. EIA, 2021
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PV & Wind Look Cheaper Long-Term 
at Same Rated Power

Capacity Factor Requires Oversizing 
to Annual Power

Storage Cost Significantly Increase 
System Costs for Renewables!

• RTE Increases Oversizing
• Assume 60%

• Storage Cost Depends on Duration
• Assume 24 hours using non-

battery  storage
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Transport / Location

• Renewables generate electricity, 
needs transportation & distribution

• Transportation sector drives 26% of 
total energy use

• Energy transport efficiency and 
capital cost favors pipelines vs. 
electric transmission

• Electric input/output system 
locations may be driven by many 
factors, including permitting, existing 
infrastructure, energy security, safety, 
etc.

Transport Transport
Losses per 100 
Miles

Capital Cost, 
$/MW-mile

Electric 
Transmission

1.0-10% $3.9M

Natural Gas 
Pipeline

0.1-0.3% $1.5-2M

Hydrogen Pipeline 0.6-1.8% $1.5-2M

Liquid Pipeline 0.02-0.1% $1.5-2M

Data Sources: Brun (2020), Allison (2021), James (2018)
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Why Not Batteries?

• Batteries offer low $/MW but high 
$/MWh for significant durations above 2-
6 hours
• Energy and power both scale by adding cells

• Other concerns:
• Rare-earth material sourcing (lithium, 

cobalt)2

• Degradation3

• No viable recycling option4

• Thermal management/runaway5

• Other technologies offer promise of 
power-energy decoupling with low-cost 
energy storage media
• Potential for different charge/discharge rates

Image Source: 
Laughlin (2019)

Image Source: 
S&P Global 
(2019)
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Global Energy Storage Technology Timeline

Batteries

Flywheels, CAES

Data and Images from EASE/EERE (2017)
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New Long-Duration Energy Storage 
Technologies are Needed

http://css.umich.edu/sites/default/files/U.S._Grid_Energy_Storage_Factsheet_CSS15-17_e2018.pdf
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New Long-Duration Energy Storage 
Technologies are Needed

• New systems will need:
• Lower cost than pumped hydro or batteries
• Higher round-trip efficiency and fewer carbon 

emissions than gas-fired CAES
• Longer duration than flywheels
• Non-specific geology (no mountains or salt caverns)

• Many new system options are based on 
thermodynamic cycles:
• Pumped heat energy storage (PHES)
• Adiabatic or hydrogen-fired CAES
• Liquid air energy storage (LAES)
• Thermochemical

• Hydrogen-based

• Synthetic natural gas

• Closed sulfur cycle

Diabatic CAES

Example PHES

Image Modified 
from Kerth (2019)

Image Source: 
Tom (2019)
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Mechanical ES: Pumped Hydro
• Potential energy of water using reservoirs at 

different elevations
• Decades of commercial experience
• Mature turbomachinery

• Reversible (Francis) pump-turbine
• Ternary sets

• Technology Gaps/Development
• Geography-specific concept -> siting limitations
• High capital cost
• Modular pumped hydro; subsurface; subsea; 

open-loop

• Expected Performance
• 70-85%+ round trip efficiency
• >40 year life

Francis Turbine Runner, 1942

World’s First PSH 
System, 1930

Data Source: Luo et al (2015)



SOUTHWEST RESEARCH INSTITUTE –TMCES TECHNOLOGY OVERVIEW

Mechanical ES: Compressed Air Energy 
Storage
• Energy stored in large volumes of compressed 

air; supplemented with heat storage (adiabatic 
CAES)

• Centrifugal/axial machinery in existing concepts 
derived from gas turbine, steam turbine, 
integrally-geared compressor. 

• TRL 9 for diabatic; 5-6 for adiabatic CAES

• Two existing plants at Huntorf & McIntosh

• Technology gaps/development
• Site-specific; requires salt dome
• Adiabatic CAES: heat exchange, storage concepts; 

reciprocating isothermal CAES; constant-head CAES; 
hydraulic compression; subsea CAES

• Expected performance
• 40-50% for diabatic CAES, ~50-70% for adiabatic CAES Diabatic (top) and Adiabatic (bottom) CAES

Image Source: Kere (2014)
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Mechanical ES: Flywheels
• Store energy as rotating kinetic energy

• Vacuum environment for loss minimization

• TRL 9, commercially available as UPS

• Technology gaps / development
• High standby losses; Low power density

• Improved strength:weight materials; 
minimize electrical losses; superconducting 
magnetic bearings

• Expected performance
• 90-95% round-trip efficiency

• Nearly infinite cycle lifetime

• Very short response time

Data Source: Amiryar and Puleln (2017), Luo et al (2015)

Image Sources: Beacon Power20 MW Flywheel Plant for NYISO
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Mechanical ES: Gravitational
• Electricity used for elevation of solid mass

• Subsurface with wind/hydraulic pump
• On-surface with rail cars or towers

• High component TRL, including 
motor/generator and hydro pump/turbine

• System TRL 4-5, demonstrators/pilots 
funded

• Technology gaps/development
• Overall system immaturity; Loss minimization; 

Sealing of hydraulic systems; position control

• Claimed Performance:
• 80-90% Charge/Discharge Efficiency
• 30-60% cost of pumped hydro
• 1-10 s response Image and Data Sources:

https://energyvault.ch/
https://www.gravitricity.com/
https://www.aresnorthamerica.com/grid-scale-energy-storage
https://heindl-energy.com/technical-concept/basic-concept/

Gravitricity

Heindl
Energy

ARES

Energy 
Vault

https://energyvault.ch/
https://www.gravitricity.com/
https://www.aresnorthamerica.com/grid-scale-energy-storage
https://heindl-energy.com/technical-concept/basic-concept/
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Thermal ES: Storage Overview

• Sensible storage raises or lowers temperature of single-
phase material
• Molten salts, thermal oil, water, rocks, concrete, rocks, etc.

• Latent heat storage changes phase, typically liquid-solid 
transition
• Ice, Phase change material (PCM)

• Direct (heat transfer and storage with same medium) or 
indirect systems

• Two-tank or thermocline storage

• Technology gaps/development
• Corrosion and thermal/cyclic stability
• Low-cost compact high-performance heat exchangers
• Molten salts above 565 °C; salt pumps & tanks
• Particle thermal storage & heat transfer
• Encapsulated PCMs
• Low-cost cold storage

Image Source: Shultz (2019)

CSP + 
Molten Salt 
TES

Ice storage

Encapsulated PCMhttps://www.ice-energy.com/

https://www.ice-energy.com/
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Thermal ES: Pumped Heat
• Electricity drives heat pump to charge 

system, creating temperature difference; 
Heat engine discharges system for electricity 
out

• Working fluids: Argon, air, CO2

• Machinery is conceptually like a gas turbine, 
but some key differences.

• Closed cycle at higher pressure
• No combustor
• Charge mode temperatures very different

• Technology gaps / development
• Low-cost TES, heat exchangers, machinery, 

cycle/system
• Some variations store thermal energy through 

process fluid phase change and direct storage, 
e.g. CO2

• Predicted 50-70% RTE
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Ambient  Air (1 bar, 20°C)
1.15 kg/m3

Liquid Air (10 bar, -170°C)
656 kg/m3

Thermal ES: Liquid Air

• Similar to CAES but different process liquefies air 
for compact, portable storage

• Many variations: refrigeration cycles, thermal 
storage, heat input, cryogenic carbon capture, etc.

• Utilizes existing technology for nitrogen storage, 
radial turbomachinery (at pilot scale).

• Technology gaps /development
• Overall system efficiency and costs via 

turbomachinery and heat exchanger development; 
system / cycle variations & maturity

• Water handling; Large-scale system development (5-
50 MW); Synergy with waste heat, flywheels

• Expected Performance
• 60-70% efficiency and 30-40 year lifespan

• Storage losses as low as 0.05% by volume per day 
(Yang, 2006) 
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Thermochemical ES: Hydrogen
• Use excess grid energy to split water in to H2

with electrolysis or reform methane

• Salt dome storage is mature, production and 
utilization under development.

• Technology gaps and development
• High cost, low RTE

• High temperature electrolysis

• Feedstock availability required

• High pressure storage – location and safety 

• H2 transport and compression challenges

• Gas turbine combustion with low NOx emissions

• Couple with CSP or other heat source instead of using 
surplus energy to drive electrolysis

• Expected performance ~10-30% round trip 
efficiency, targeting 50%

• Many hydrogen carriers including ammonia, 
methanol, synthetic methane, etc.

Charge

Water electrolysis

Store

H2 at high pressure

H2O2, other carriers

E Q
or

O2

H2

E

2H2O → 2H2 + O2

H2O

Discharge

Use for electricity/power generation:

Hydrogen gas turbine / fuel cell

Reaction heat release

Sell

Use for refining

Use for NG or Ammonia

https://www.turbomachinerymag.com/fuel-switching/

https://www.edie.net/news/6/Work-to-being-on-pioneering-salt-
cavern-hydrogen-storage-scheme/
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Integrated/Hybrid Energy Storage
• Best efficiencies/costs may be achievable by 

leveraging infrastructure and process of 
existing generation/industrial systems
• Concentrating Solar Power + Pumped Thermal 

Storage
• Natural Gas Pipelines + Hydrogen
• Fossil Fuels + Stored Carbon Capture
• Waste Heat + Liquid Air/Pumped Thermal
• Sector Coupling + Thermal Storage
• More…

• Storage can mitigate flexibility requirements 
on baseload generation

• Requires customization to match wide range of 
existing infrastructure
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Development Needs for Energy Storage: 
Systems
• Lab-scale and pilot-scale demonstrations 

to build commercial acceptance

• Control & operation experience of closed 
or semi-closed cycles
• Inventory control for turndown; ambient 

conditions
• Leakage management / recovery
• Trip & settle-out scenarios
• Charge/discharge mode system balancing

• Detailed plant design & cost optimization

• Integration/optimization with numerous 
generators and applications
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Development Needs for Energy Storage: 
Machinery & HX
• Most new thermodynamic systems are closed or 

semi-closed cycles requiring:
• Very high machinery efficiency over a variety of 

temperatures, pressures, and scales (radial    axial)
• Low leakage/makeup requirements; consider 

hermetic machinery (bearings, seals)
• High pressures, densities, possibly temperatures
• PHES: High-temp compressor; single machinery train 

for charge/discharge mode; expander phase change 

• Integration of compression, expansion, and heat 
exchange functionality into machinery to improve 
cost and performance

• Hydrogen combustion, compression
• Emissions, stability/range
• High tip speeds or many stages

• Fast ramping and wide operating range

• Low-cost compact HX for gas to liquid/solid 
thermal stores and with fast transient capability

High-Efficiency High-Temperature 10 MWe 715 °C Supercritical 
CO2 Turbine with Low-Leakage Dry Gas Seals (Moore 2019)

CO2 Compressor for CCS with Internally-
Cooled Diaphragms (Moore 2014)

Wet Gas Compression Test 
(Musgrove 2016)
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Questions?

Tim Allison, Ph.D.
Southwest Research Institute
(210) 522-3561
tim.allison@swri.org R
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