Thermal-Mechanical-Chemical Energy Storage Technology Overview and Research Activities

Timothy C. Allison, Ph.D.

Director, Machinery Department

Southwest Research Institute

TMCES Workshop

San Antonio, TX

August 9, 2021

SOUTHWEST RESEARCH INSTITUTE - TMCES TECHNOLOGY OVERVIEW

SwRI is an Applied Research & Development Company

- Founded in 1947, based in San Antonio, Texas
- 501 (c)(3) nonprofit corporation
 - Internal research
 - New laboratories
- ~\$680M annual revenue from contract work for industry and government clients
- Over 2,700 employees
- 1,500-acre facility; 2.3 million square feet of laboratories & offices
- Client-centric IP policy
- Machinery Department: 75 employees, 5 labs with turbomachinery trains up to 14 MW

Large-Scale Long-Duration Energy Storage is Needed to Enable Deep Renewable Penetration Image Source: EPRI 2018

Variability, demand mismatch of wind and solar

- Typical hourly, daily, seasonal variability is ~50-100% of rated power
- Studies show that storage on the order of ~1x daily energy production may be needed¹
- Storage at renewable plant or baseload plant absorbs ramps/transients
- The storage need for a large city ranges from ~ 25 GWh (4 hours storage in Phoenix) - 840 GWh (daily consumption in Tokyo)

¹Solomon, A.A. *et al*, 2017.

Image Source: Pfenninger 2017

1-35 of the world's largest pumped hydro system...

...or 23-763 of these molten salt tanks

Energy Storage Use Cases

- Many potential use cases for many markets
 - Arbitrage
 - Demand response
 - Peaker
 - Spinning reserve
 - Transmission & distribution upgrade deferrals
 - Behind-the-meter peak shaving
 - Reduced O&M for conventional generators
- Combinations of the above
- Many unknowns: future grid mix, regulatory, different markets, permitting, carbon/emission pricing, etc.

Storage Cost Impacts to Renewable Power

PV & Wind Look Cheaper Long-Term at Same Rated Power Capacity Factor Requires Oversizing to Annual Power

Storage Cost Significantly Increase System Costs for Renewables!

Transport / Location

- Renewables generate electricity, needs transportation & distribution
- Transportation sector drives 26% of total energy use
- Energy transport efficiency and capital cost favors pipelines vs. electric transmission
- Electric input/output system locations may be driven by many factors, including permitting, existing infrastructure, energy security, safety, etc.

Transport	Transport Losses per 100 Miles	Capital Cost, \$/MW-mile
Electric Transmission	1.0-10%	\$3.9M
Natural Gas Pipeline	0.1-0.3%	\$1.5-2M
Hydrogen Pipeline	0.6-1.8%	\$1.5-2M
Liquid Pipeline	0.02-0.1%	\$1.5-2M
Data Sources: Brun (2020), Allison (2021), James (2018)		

Map of U.S. interstate and intrastate natural gas pipelines

ource: U.S. Energy Information Administration, About U.S. Natural Gas Pipelines

Why Not Batteries?

- Batteries offer low \$/MW but high \$/MWh for significant durations above 2-6 hours
 - Energy and power both scale by adding cells
- Other concerns:
 - Rare-earth material sourcing (lithium, cobalt)²
 - Degradation³
 - No viable recycling option⁴
 - Thermal management/runaway⁵
- Other technologies offer promise of power-energy decoupling with low-cost energy storage media
 - Potential for different charge/discharge rates

Image Source: S&P Global (2019)

Global Energy Storage Technology Timeline

New Long-Duration Energy Storage Technologies are Needed

New Long-Duration Energy Storage Technologies are Needed

- New systems will need:
 - Lower cost than pumped hydro or batteries
 - Higher round-trip efficiency and fewer carbon emissions than gas-fired CAES
 - Longer duration than flywheels
 - Non-specific geology (no mountains or salt caverns)
- Many new system options are based on thermodynamic cycles:
 - Pumped heat energy storage (PHES)
 - Adiabatic or hydrogen-fired CAES
 - Liquid air energy storage (LAES)
 - Thermochemical
 - Hydrogen-based
 - Synthetic natural gas
 - Closed sulfur cycle

Mechanical ES: Pumped Hydro

- Potential energy of water using reservoirs at different elevations
- Decades of commercial experience
- Mature turbomachinery
 - Reversible (Francis) pump-turbine
 - Ternary sets
- Technology Gaps/Development
 - Geography-specific concept -> siting limitations
 - High capital cost
 - Modular pumped hydro; subsurface; subsea; open-loop
- Expected Performance
 - 70-85%+ round trip efficiency
 - >40 year life

Data Source: Luo et al (2015)

Francis Turbine Runner, 1942

World's First PSH System, 1930

Energy stored in large volumes of compressed air; supplemented with heat storage (adiabatic CAES) Centrifugal/axial machinery in existing concepts derived from gas turbine, steam turbine,

- integrally-geared compressor.
- TRL 9 for diabatic; 5-6 for adiabatic CAES
- Two existing plants at Huntorf & McIntosh
- Technology gaps/development
 - Site-specific; requires salt dome
 - Adiabatic CAES: heat exchange, storage concepts; reciprocating isothermal CAES; constant-head CAES; hydraulic compression; subsea CAES
- Expected performance
 - 40-50% for diabatic CAES, ~50-70% for adiabatic CAES

Diabatic (top) and Adiabatic (bottom) CAES

Mechanical ES: Compressed Air Energy Storage

Mechanical ES: Flywheels

- Store energy as rotating kinetic energy
 - Vacuum environment for loss minimization
- TRL 9, commercially available as UPS
- Technology gaps / development
 - High standby losses; Low power density
 - Improved strength:weight materials; minimize electrical losses; superconducting magnetic bearings
- Expected performance
 - 90-95% round-trip efficiency
 - Nearly infinite cycle lifetime
 - Very short response time

Data Source: Amiryar and PuleIn (2017), Luo et al (2015)

20 MW Flywheel Plant for NYISO

Image Sources: Beacon Power

Mechanical ES: Gravitational

- Electricity used for elevation of solid mass
 - Subsurface with wind/hydraulic pump
 - On-surface with rail cars or towers
- High component TRL, including motor/generator and hydro pump/turbine
- System TRL 4-5, demonstrators/pilots funded
- Technology gaps/development
 - Overall system immaturity; Loss minimizatior Sealing of hydraulic systems; position control
- Claimed Performance:
 - 80-90% Charge/Discharge Efficiency
 - 30-60% cost of pumped hydro
 - 1-10 s response

Image and Data Sources:

https://energyvault.ch/

https://www.gravitricity.com/

https://www.aresnorthamerica.com/grid-scale-energy-storage

https://heindl-energy.com/technical-concept/basic-concept/

Temperature Rises

heat energy

Thermal ES: Storage Overview

- Sensible storage raises or lowers temperature of singlephase material
 - Molten salts, thermal oil, water, rocks, concrete, rocks, etc.
- Latent heat storage changes phase, typically liquid-solid transition
 - Ice, Phase change material (PCM)
- Direct (heat transfer and storage with same medium) or indirect systems
- Two-tank or thermocline storage
- Technology gaps/development
 - Corrosion and thermal/cyclic stability
 - Low-cost compact high-performance heat exchangers
 - Molten salts above 565 °C; salt pumps & tanks
 - Particle thermal storage & heat transfer
 - Encapsulated PCMs
 - Low-cost cold storage

SOUTHWEST RESEARCH INSTITUTE - TMCES TECHNOLOGY OVERVIEW

Core: PCM in solid stat

Encapsulated PCM

As PCM solidifies, heat energy is released back t

Temperature Falls

& condensi

Ice storage

Thermal ES: Pumped Heat

- Electricity drives heat pump to charge system, creating temperature difference; Heat engine discharges system for electricity out
- Working fluids: Argon, air, CO₂
- Machinery is conceptually like a gas turbine, but some key differences.
 - Closed cycle at higher pressure
 - No combustor
 - Charge mode temperatures very different
- Technology gaps / development
 - Low-cost TES, heat exchangers, machinery, cycle/system
 - Some variations store thermal energy through process fluid phase change and direct storage, e.g. CO₂
- Predicted 50-70% RTE

Thermal ES: Liquid Air

- Similar to CAES but different process liquefies air for compact, portable storage
- Many variations: refrigeration cycles, thermal storage, heat input, cryogenic carbon capture, etc.
- Utilizes existing technology for nitrogen storage, radial turbomachinery (at pilot scale).
- Technology gaps /development
 - Overall system efficiency and costs via turbomachinery and heat exchanger development; system / cycle variations & maturity
 - Water handling; Large-scale system development (5-50 MW); Synergy with waste heat, flywheels
- Expected Performance
 - 60-70% efficiency and 30-40 year lifespan
 - Storage losses as low as 0.05% by volume per day (Yang, 2006)

Thermochemical ES: Hydrogen

- Use excess grid energy to split water in to H₂ with electrolysis or reform methane
- Salt dome storage is mature, production and utilization under development.
- Technology gaps and development
 - High cost, low RTE
 - High temperature electrolysis
 - Feedstock availability required
 - High pressure storage location and safety
 - H2 transport and compression challenges
 - Gas turbine combustion with low NO_x emissions
 - Couple with CSP or other heat source instead of using surplus energy to drive electrolysis
- Expected performance ~10-30% round trip efficiency, targeting 50%
- Many hydrogen carriers including ammonia, methanol, synthetic methane, etc.

SOUTHWEST RESEARCH INSTITUTE - TMCES TECHNOLOGY OVERVIEW

Integrated/Hybrid Energy Storage

- Best efficiencies/costs may be achievable by leveraging infrastructure and process of existing generation/industrial systems
 - Concentrating Solar Power + Pumped Thermal Storage
 - Natural Gas Pipelines + Hydrogen
 - Fossil Fuels + Stored Carbon Capture
 - Waste Heat + Liquid Air/Pumped Thermal
 - Sector Coupling + Thermal Storage
 - More...
- Storage can mitigate flexibility requirements on baseload generation
- Requires customization to match wide range of existing infrastructure

Hour of day

20

Development Needs for Energy Storage: Systems

- Lab-scale and pilot-scale demonstrations to build commercial acceptance
- Control & operation experience of closed or semi-closed cycles
 - Inventory control for turndown; ambient conditions
 - Leakage management / recovery
 - Trip & settle-out scenarios
 - Charge/discharge mode system balancing
- Detailed plant design & cost optimization
- Integration/optimization with numerous generators and applications

Development Needs for Energy Storage: Machinery & HX

- Most new thermodynamic systems are closed or semi-closed cycles requiring:
 - Very high machinery efficiency over a variety of temperatures, pressures, and scales (radial-axial)
 - Low leakage/makeup requirements; consider hermetic machinery (bearings, seals)
 - High pressures, densities, possibly temperatures
 - PHES: High-temp compressor; single machinery train for charge/discharge mode; expander phase change
- Integration of compression, expansion, and heat exchange functionality into machinery to improve cost and performance
- Hydrogen combustion, compression
 - Emissions, stability/range
 - High tip speeds or many stages
- Fast ramping and wide operating range
- Low-cost compact HX for gas to liquid/solid thermal stores and with fast transient capability

High-Efficiency High-Temperature 10 MWe 715 °C Supercritical CO₂ Turbine with Low-Leakage Dry Gas Seals (Moore 2019)

rnally- Wet Gas Compression Test (Musgrove 2016)

CO2 Compressor for CCS with Internally-Cooled Diaphragms (Moore 2014)

Questions?

Tim Allison, Ph.D. Southwest Research Institute (210) 522-3561 tim.allison@swri.org

