Development & Validation of Low-Cost, Highly-Durable, Spinel-Based Materials for SOFC Cathode-Side Contact

Jiahong Zhu

Department of Mechanical Engineering Tennessee Technological University (TTU)

20th Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting Nov. 16-18, 2021

Outline

- Introduction and Project Objectives
- Effect of Spinel Composition on the Reaction Layer Formation
- Performance Evaluation of the Sintered Spinel Contact Thermally Converted from Metallic Precursors
- Reactive Sintering of Dense (Mn,Co)₃O₄ (MCO) Coatings
- Co-sintering of Spinel-Based Coating/Contact Dual-Layer Structure
- Concluding Remarks
- Acknowledgments

Need of Contacting for Different SOFC Stacks

 In stacks with anode-supported cells (ASC-SOFC), the contact is required to minimize the cathode-interconnect interfacial resistance.

Cathode-Interconnect Interface in ASC SOFC Stacks

 In all-ceramic stacks, the contact is required to minimize the interfacial resistance between the current collector plate and cathode end plate.

Cathode-Current Collector Interface in All-Ceramic SOFC Stacks

3

Different Contact Materials

- Key contact material requirements are: low cost, high electrical conductivity, good CTE match, adequate compatibility and sinterability
- Most contact developments have focused on (La,Sr)(Mn,Co,Fe,Ni,Cu)O₃:
 - Difficulty in balancing the electrical conductivity, CTE, sinterability and chemical compatibility of the perovskites.

Material	Example	CTE (×10 ⁻⁶ /K)	Conductivity	Main Concern	
Туре		(20–800°C)	(S·cm , 800°C)		
	Pt	10.0	Metallic	High Cost	
Noble	Pd	12.3	Metallic	High Cost	
Metal	Au	16.6	Metallic	High Cost	
	<u>Ag</u>	22.0	<u>Metallic</u>	Volatility	
	(La _{0.8} Sr _{0.2}) CoO _{3-δ}	19.2 (20-1000°C)	1400	CTE Mismatch	
	(La _{0.8} Sr _{0.2})(Co _{0.5} Fe _{0.5})O _{3-δ}	18.3 (20-1000°C)	340	CTE Mismatch	
Perovskite	(La _{0.8} Sr _{0.2})(Co _{0.5} Mn _{0.5})O _{3-δ}	15.0 (20-1000°C)	190	CTE Mismatch	
	(La _{0.8} Sr _{0.2})MnO ₃	11.7 (20-1000°C)	170	Sinterability	
	LaMn _{0.45} Co _{0.35} Cu _{0.2} O ₃	13.9	80	Mn/Cu Migration	
Spinel	MnCo ₂ O ₄	9.7-14.4	24-89	Sinterability	
	Mn _{1.5} Co _{1.5} O ₄	10.6-11.6	55-68	Sinterability	
	NiCo ₂ O ₄	12.1	0.93	Sinterability	
	NiFe ₂ O ₄	11.8	0.3, 6.8, 17.1	Sinterability	

Why (Ni,Fe)₃O₄- and (Mn,Co)₃O₄-Based Spinels as Contact Material?

 Conductive spinels based on (Ni,Fe)₃O₄ and (Mn,Co)₃O₄, which have been extensively evaluated as interconnect coating, are also promising for contact application, based on electrical conductivity, CTE, chemical compatibility, etc.

Material Type	Example	CTE (×10 ⁻⁶ /K) (20—800°C)	Conductivity (S·cm ⁻¹ , 800°C)	Main Concern
Spinel	MnCo ₂ O ₄	9.7-14.4	24- 89	Sinterability
	Mn _{1,5} Co _{1,5} O ₄	10.6-11.6	55-68	<u>Sinterability</u>
	NiCo ₂ O ₄	12.1	0.93	Sinterability
	NiFe ₂ O ₄	11.8	0.3, 6.8, 17.1	Sinterability
	Ni _{0.85} Fe _{2.15} O ₄	12.1	15.4	Sinterability

- Unfortunately, the sinterability of spinels is very poor (typically ≥1000°C), if metal oxides are used as the starting powders.
- Employment of metallic powders (instead of oxide powders) as the starting precursor will lower the sintering temperature via a reactive sintering mechanism called <u>environmentally-assisted reactive</u> <u>sintering (EARS).</u>

Utilization of EARS for Reduced-Temperature Sintering of Spinel-Based Contact

 In EARS, with the participation of oxygen from air, the metallic powder precursor will be oxidized and reacted to form a wellsintered spinel at a reduced temperature (e.g., 900°C):

(b):
$$AO_x + 2BO_y + (2 - \frac{1}{2}x - y)O_2(g) = AB_2O_4 + \Delta H_1$$

(c): $A + 2BO_y + (2-y)O_2(g) = AB_2O_4 + \Delta H_2$

(d) & (e): $A + 2B + 2O_2(g) = AB_2O_4 + \Delta H_3$

 $\Delta H_3 > \Delta H_2 >> \Delta H_1$

- Enhanced sintering via EARS is likely due to:
 - Heat released during the reaction;
 - Volume expansion upon conversion of metal to metal oxide;
 - Formation of highly-active surface nano-oxides;
 - Shorter diffusion distance when a pre-alloyed powder is employed.
 Zhu et al., IJHE, 2018

(a) with a spinel (S) powder

(b) with a mixture of metal oxides

(c) with metal and oxide powders

(d) With two metal powders

Project Objectives

- Optimization of the multi-component alloy precursor composition as contact and coating materials. The alloy compositions will be optimized via composition screening in the (Ni,Fe,Co,X)₃O₄ and (Mn,Co,X)₃O₄ systems, alloy design using physical metallurgy principles, and cost considerations. The desired alloy powders will be manufactured.
- Demonstration/validation of the contact layer and interconnect coating performance in relevant SOFC stack environments. Both ASR behavior and in-stack performance of the contact layer and interconnect coating in relevant stack operating environments will be evaluated.
- Further cost reduction and commercialization assessment. Approaches to further reducing the stack cost will be explored, such as co-sintering of the interconnect coating and contact layer during initial stack firing. Cost analysis and scale-up assessment will be conducted for potential commercialization. 7

Composition Variation in (Mn,Co)₃O₄ Spinel

- Some controversies exist for the Mn₂O₃-Co₃O₄ system.
- Two most important compositions in the (Mn,Co)₃O₄ spinel system are:
 - MnCo₂O₄: CS at both 800 and 20°C;
 - $\checkmark Mn_{1.5}Co_{1.5}O_4: CS at 800°C and TS + CS at 20°C.$
- Our previous study focused on the effect of spinel composition (x = 1 to 1.5) in $Mn_xCo_{3-x}O_4$ on its electrical conductivity and CTE.
- Several promising spinel compositions were identified accordingly.

Phase Diagram of the Co-Mn-O System in Air

Spinel Compositional Optimization in (Mn,Co)₃O₄: Reaction Layer (RL) Formation with Cr₂O₃

- Polished pellets of Mn_xCo_{3-x}O₄ (x = 1.0, 1.2, 1.35, 1.5) and Cr₂O₃ were placed in contact with one another (with Pt nanoparticles as markers of the original interface under a compressive load at 900°C for 20-700 h.
- The diffusion couples were then cross-sectioned for microstructural observation and the reaction layer composition/ thickness were determined.

Mn _{1.35} Co _{1.65} O ₄ /Ċ	r ₂ O ₃ Diffusion Couple	
Annealed for	or 300 h at 900°C	

RL Compositions for Mn _x Co _{3-x} O ₄ /Cr ₂ O ₃ Couples				
Diffusion Couple	RL Composition			
MnCo ₂ O ₄ /Cr ₂ O ₃	Mn _{0.1} CoCr _{1.9} O ₄			
Mn _{1.2} Co _{1.8} O ₄ /Cr ₂ O ₃	Mn _{0.15} Co _{0.95} Cr _{1.9} O ₄			
Mn _{1.35} Co _{1.65} O ₄ /Cr ₂ O ₃	Mn _{0.5} CoCr _{1.5} O ₄			
Mn _{1.5} Co _{1.5} O ₄ /Cr ₂ O ₃	Mn _{0.25} Co _{0.85} Cr _{1.9} O ₄			

Electrical Conductivity and CTE of the RL Compositions

- The spinel RL exhibited overall lower electrical conductivity and CTE than the corresponding MCO spinels.
- Mn_{0.5}CoCr_{1.5}O₄ (formed in the Mn_{1.35}Co_{1.65}O₄/Cr₂O₃ couple) had a highest electrical conductivity and CTE among the RL compositions evaluated.

Electrical Conductivity vs. 1/T of Different Reaction Layer Compositions 10

Growth Kinetics of Reaction Layer

- The RL growth rate increased with the Mn content in Mn_xCo_{3-x}O₄;
- The RL ASRs was projected based on both the layer growth kinetics and its electrical conductivity.
- Based on the projected RL ASR contribution, the $Mn_xCo_{3-x}O_4$ spinel with x \leq 1.35 are most suitable for long-term operation.

Thickness of the reaction layer vs. t

Diffusion Couple	RL Composition	Projected RL ASR (mΩ·cm ²)				
		5000 h	10,000 h	2,0000 h	4,0000 h	
MnCo ₂ O ₄ /Cr ₂ O ₃	Mn _{0.1} CoCr _{1.9} O ₄	1.55	2.20	3.11	4.40	
Mn _{1.35} Co _{1.65} O ₄ /Cr ₂ O ₃	Mn _{0.5} CoCr _{1.5} O ₄	0.44	0.60	0.88	1.24	
Mn _{1.5} Co _{1.5} O ₄ /Cr ₂ O ₃	Mn _{0.25} Co _{0.85} Cr _{1.9} O ₄	8.99	12.71	17.97	25.42	

Projected ASR Values for Different Reaction

Gas Atomization of Co-Mn Based Alloys

- Based on the properties of MCO, a number of Mn-Co based precursor alloy compositions were selected for gas atomization.
- The atomized powder precursor layers were successfully converted to a single-phase spinel structure after 900°C for 2 h in air.

Gas Atomizer at TTU

Chemical Compositions of Some Co-Mn Alloy Powders (wt.%) & Corresponding Spinel Compositions

· · · · · · · · · · · · · · · · · · ·				<u> </u>	
Alloy	Со	Mn	Fe	Се	Spinel Composition
Alloy 1	68.21	31.79	-	-	MnCo ₂ O ₄
Alloy 2	64.72	31.80	3.23	-	MnCo _{1.9} Fe _{0.1} O ₄
Alloy 3	64.72	31.77	3.23	0.41	MnCo _{1.895} Fe _{0.1} Ce _{0.005} O ₄

20 µm

Cross-sectional View of 12 Converted Alloy-1 Layer

Cell Area-Specific Resistance (ASR) with Different Contact Layers

- A number of test cells were constructed, with the contact precursor layer sandwiched between bare Crofer 22 APU and the LSM cathode.
- The cell ASRs with all the alloy-derived contacts were significantly lower than that with the mixed Co+MnO₂ derived contact.
- The cell with the Ce-doped alloy (Alloy-3) contact had the best overall ASR performance.

Schematic of ASR Test Cell

Cell ASR vs. Time of Test Cells

Cell Area-Specific Resistance (ASR) with Different Contact Layers

- The cell ASR with Co+MnO₂ derived contact had the highest initial and final ASR (R_i and R_f) as well as the highest initial and final ASR degradation rate (DR_i and DR_f), likely due to the more porous nature of the contact layer.
- The cell ASR with Alloy-3 derived contact had the lowest R_f, DR_i & DR_f, likely as a result of the Ce dopant modifying the Cr₂O₃ scale growth.

Cell ASR at 800°C during Isothermal Exposure						
	Alloy 1	Alloy 2	Alloy 3	Co+MnO ₂		
R _i (mΩ⋅cm²)	1.8	2.2	2.0	4.6		
R _f (mΩ⋅cm²)	4.0	4.6	3.1	7.0		
DR _i (μΩ·cm²/h)	3.3	3.5	1.5	11.1		
DR _f (μΩ·cm²/h)	1.4	1.3	1.0	1.4		

ASR under Severe Cycling Condition

- The cells were cyclically exposed (one cycle consisted of holding at 800° C for 10 h, furnace cooled, and reheated to 800° C). In addition to the best MCO contact, two commercial contact materials were included in evaluation for comparison, i.e., La(Mn_{0.45}Co_{0.35}Cu_{0.2})O₃ (LCC10) & LSM.
- The cell with the EARS-processed MCO contact exhibited the lowest and most stable ASR over 500 cycles.

ASR vs. Cumulative Time during Cyclic Exposure for ZMG/Contact/LSM Cells¹⁵

EARS Processing of Dense MCO Coatings

- By controlling the composition/ shape/size/size distribution/initial packing density of the metallic precursor powders, a uniform & dense spinel layer was achieved after thermal conversion at 900°C for 2 h in air on the full-size plate.
- The EARS-derived coating does not require a reduction treatment or a sintering temperature > 900°C.

Improvement in Quality of TTU's Reactively Sintered MCO Coatings

MCO Coating at Different Plate Locations

Co-sintering of Coating/Contact Dual-Layer Structure: Proposed Approach

- To improve the contact quality and reduce the coating/contact processing cost, co-sintering of the coating and the contact layer during initial stack firing/operation is explored, utilizing two different metallic precursors:
 - Two spinel-forming precursors (Type #1
 for the contact layer and Type #2 for the dense MCO coating) were employed;
 - Reactive co-sintering in air at 900°C was utilized for simultaneous formation of the dual-layer structure.

Schematic of Co-sintering of Spinel-Based Coating/Contact Dual-Layer Structure¹⁷

Low, Stable ASR of Full-Size ZMG230/Coating/Contact/LSM Assembly with Co-sintered Coating/Contact Layer

ASR during Isothermal and Cyclic Exposures at 800°C in Air for Full-Size ZMG/coating/ Contact/LSM Assembly Cosintered at 900°C for 2 h.

- The warping problem of the 3-mm ZMG alloy plates during grinding was addressed by a stress-relief anneal treatment.
- Co-sintering of the double-layer structure between the full-size ZMG & LSM plates led to formation of the desired microstructures & low ASR.
- The negligible effect of thermal cycling on the ASR behavior is a result of nearly perfect match in CTE between these components.

Concluding Remarks

- Several spinel compositions in the (Mn,Co)₃O₄ system have been identified for SOFC coating/contact applications, based on considerations of phase constitution, electrical conductivity, CTE, reaction layer formation with chromia, etc.
- A number of Mn-Co based precursor alloy powders have been prepared via gas atomization and good ASR performance of the EARS-processed spinel contact layer has been demonstrated.
- By controlling the metallic precursor powder characteristics, a dense MCO coating has been synthesized on full-size alloy plate.
- Co-sintered dual-layer structure with a dense spinel layer as coating and a porous layer as contact has shown exceptional electrical performance during isothermal and cyclic exposures.
- In-stack testing to verify the performance of co-sintered coating/ contact layers will be conducted by our industrial partner.
- Cost analysis & commercialization feasibility assessment has been initiated.

Acknowledgments

- U. S. Department of Energy National Energy Technology Laboratory, Solid Oxide Fuel Cell Prototype System Testing and Core Technology Development Program, Award No. DE-FE0031187; Project Manager: Dr. Patcharin Burke
- Allen Yu, Joseph Simpson, David Chesson, and Brian Bates, TTU
- Dr. Hossein Ghezel-Ayagh, FuelCell Energy, Inc.
- Dr. John Pietras and his team at Saint Gobain