Development of High-Performance Metal-Supported SOECs and Innovative Diagnostic Methodologies

PI: Xiao-Dong Zhou

Department of Chemical Engineering University of Louisiana at Lafayette Lafayette, LA 70503

Email: zhou@louisiana.edu

PM: Jason Montgomery

4:00 pm EST on November 18, 2021

Outline

- Technical and Scientific Background Necessity and relevance
- 2. Project Objectives
 High performance MS-SOECs and diagnosis
- 3. Technical Approaches

 Experimental and theoretical modeling
- 4. Project Budget and Period Cost share, equipment
- 5. Project Management Plans Investigators and risk analysis

Hydrogen Production through Solid Oxide Electrolysis Cells (SOECs)

Cost (\$/kg):

How to achieve high-performance SOECs?

Durability (A/1000-h or W/1000-h)

What are the factors limiting the performance stability of an SOEC?

Diagnosis

How to develop accelerated test methodologies and quantify the role of electrode microstructures?

Factors Influencing Current Density and Mechanical Strength

$$\mathbf{i} = \left(1 - \frac{L}{L - \frac{\mathbf{\varepsilon}}{\mathbf{\tau}} \frac{p}{RT} \frac{D_{\alpha,\beta} D_{K,\alpha}}{D_{K,\alpha} + D_{\alpha,\beta}} \frac{z_{\alpha} F}{i_0}}\right) y_{\alpha 0} i_0$$

 ε : porosity

 τ : tortuosity

L: diffusion layer thickness

α: molar fraction of species

 $y_{\alpha 0}$: molar fraction of species

 $D_{\alpha,\beta}$: molecular diffusion coefficient

- A high ε/τ value \rightarrow high Faradaic current at the electrolyte/fuel electrode interface.
- Greater porosity (ε) \rightarrow poor strength of the

cell support.

Tasks to Be Performed

- Task 1.1 Project Management and Planning
- Task 2.0 Fabrication of Button Cells and Single Cells
- Task 3.0 Cell Testing and Development of Accelerated Test Protocols
- **Subtask 3.1 Cell testing (Pretesting)**
- Subtask 3.2 Measurements of baseline cells
- **Subtask 3.3 Accelerated test development for SOECs**
- Task 4 Theoretical Analysis, Diagnosis, and Post Analysis
- **Subtask 4.1 Acquisition of sectional images of SOECs**
- Subtask 4.2 Applying machine learning on the analysis of specimens

With a significant number of images.

With a limited number of images.

Subtask 4.3 - Theoretical study

Fuel Cell Testing Lab (Button Cells and Single Cells)

- 2 walk-in fume hoods; 3 bench-top fume hoods
- 26 button cell test stands;
- 6 single cell test stands (5×5 cm²)
- 32 channels for i-V up to 30 A; 16 EIS channels

Cell Fabrication

Button Cells and Single Cells

Reversible Cell Performance

1.4-	SOEC Mode	SOFC Mode	PC			
	○ IV for SOEC		9.4 Power			
$\sum_{i=1}^{1.2}$	JOOO OOO	PD for SOFC	0.0			
Voltage (V)		20	-0.4 ensit			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PD for SOEC		-0.8 2 8.0			
0.6	PD for SOEC T: 750°C 70%H ₂ O 30%H ₂	IV for SOFC →	r Density (W/cm²)			
•		.0 0.5 1	-1.6 ℃ .0			
 The good match between theoretical 						

 $T \cap S$

210210-C8

- Steam %
 OCV theoretical
 OCV measured

 3
 1.118 V
 1.087 V

 20
 1.021 V
 1.011V

 70
 0.920 V
 0.917 V
- The good match between theoretical OCV and measured OCV indicates good sealing performance and the correct steam concentration.
- Performance (current density) is highly dependent on operating conditions (H₂O%, temp, and voltage) and cell architectures.

EIS and SOFC Performance

The resistance at low frequencies (about 10 Hz) decreases significantly when more steam is added in the anode.

– 97% H₂ 3% H₂O

1.0

T: 750°C

210219-C10-Reversible cell performance

210219-C10-Artefacts at high frequency

Task: High Performance SOEC – Thinner Electrode

$$\mathbf{i} = \left(1 - \frac{L}{L - \frac{\mathbf{\varepsilon}}{\mathbf{\tau}} \frac{p}{RT} \frac{D_{\alpha,\beta} D_{K,\alpha}}{D_{K,\alpha} + D_{\alpha,\beta}} \frac{z_{\alpha} F}{i_0}}\right) y_{\alpha 0} i_0$$

Role of Microstructures: the porosity (ε) and tortuosity (τ).

A high $^{\varepsilon}/_{\tau}$ value will result in a high Faradaic current at the electrolyte/ electrode interface.

Task: High Performance SOEC – Thinner Electrode

Proposed Steps of the Algorithm for Image Analysis

- 1. <u>Detection stage</u>: an object detection algorithm analyzes each input frame to identify objects belonging to the target classes (such as pores or grains) using bounding boxes;
 - the output of Stage 1 is a list of bounding boxes for each of two (or more) neighboring frames; each box corresponds to an object;
- **2. Feature extraction stage:** one or more feature extraction algorithms analyze the detections from Stage (1) to extract shape information;
 - the output of Stage 2 is, for each bounding box from Stage 1, a feature vector;
- 3. <u>Location prediction stage</u>: predict the next position of each tracked object; this stage is optional for when we match across image modalities;
 - the output of Stage 3 is, for each feature vector, an appendix that contains the predicted location in the next frame;
- 4. Affinity stage: the feature and location predictions are used to compute a similarity/distance score between pairs of detections;
 - the output of Stage 4 is a matrix which has as elements the score between a pair of detections;
- **5.** Association stage: the scores from Stage 4 are used to associate detections belonging to the same target.

Milestone Log

	WBS	Title		FY2022		FY2023				
			Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
1	1	Task 1. Project Management, Planning and Reporting								
2	2	Task 2. Fabrication of button cells and single cells								
3	M2.1	Achieving metal supported SOECs single cells (5x5 cm ²)		♦	01/3	0				
5	3	Task 3. Cell Testsing and Develop Accelerated Test Protocols								
6	M3.1	Achieving reliable baselines				♦ 06/	′ 30			
7	M3.2	Achieving accelerated test protocols for SOECs							09	/30 🔷
8	4	Task 4. Theoretical Analysis, Diagnosis, and Post Analysis								
9	M4.1	Successful acquisition of sectional images of SOECs					03/0:	1 🔷		
10	M4.2	Establish quantitative relation between performance and microstructure details through machine learning							09/0	1 ♦

Investigators and Team Members

Xiao-Dong Zhou, PI

Henry Chu, Co-PI

Tom Pesacreta, co-PI

Yanhua Sun, Postdoc

Yudong Wang Graduate Student

Noah Richard Undergrad Student

Austin Schilling Undergrad Student

Jacob C Hoffpauir Undergrad Student

Project Budget and Period

	Type	Budget	Activities	Period			
DOE	Cash	\$1,000,000	Cell fabrications	09/10/21 - 09/09/23			
UL Cost Share	Cash at UL	\$172,414	 Postdoc fellow Materials 	09/10/21 – 09/09/23			
	In-kind at UL	\$77,586	Indirect cost of cash cost share	09/10/21 - 09/09/23			
Total	Total \$1,250,000; Cost share percentage: 20% (cash% = 13.8%)						

Development of High-Performance Metal-Supported SOECs and Innovative Diagnostic Methodologies

PI: Xiao-Dong Zhou

Department of Chemical Engineering University of Louisiana at Lafayette Lafayette, LA 70503

Email: zhou@louisiana.edu

PM: Jason Montgomery

4:00 pm EST on November 18, 2021