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GOAL:
Develop The Cathode
Material with

Decreasing Activation
Polarization by
Maximizing the Rates of the
ORR Reaction

Reducing Long-term
Degradation due to the
Effect of Single Air-
contained Impurity

1. High Initial Power Density
2. Low Long-term
Degradation Rate

Materials
Compositional
Design

External Impurity
Getter

CURRENT LIMITATIONS with Trial-and-Error Approach:

Characterization Detection of Nano-sized Secondary Phases

Difficulty of Doing In-situ or In-operando Observation
Detailed Reaction Mechanism Verification (Is it valid to do Accelerated Test?)

Real Impacts of Multiple Gas Species on Cell/Stack Performance
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Novel Integrated Approach and Objectives

Phase I:
* Achieve the highest power densities of 1.5W/cm? at 8002C
* Achieve a degradation rate of 0.4%/1000hrs under realistic operating conditions with
simultaneously present, MULTIPLE impurities at the cell level.
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Phase Il:
* Achieve a degradation rate of 0.1%/1000hrs at the stack level
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Tasks and Deliverables

Task 1. Project Management and Planning (Zhong) 8
Task 2. Literature Review of Existing Experimental Data (Zhong) /

Task 3. CALPHADPLYS simulations (Zhong) J
Subtask 3.1 Simulations of cathode stability under various gas impurities \/

Subtask 3.2 Simulations of cathode/electrolyte chemical compatibilities E
Subtask 3.3 Simulation of cathode point defect chemistry and electrical transport properties / 9
(ionic and electronic conductivities) -
Task 4. Materials synthesis and electrical properties (Zhong & Gopalan) 5
Subtask 4.1. Materials synthesis / g
Subtask 4.2. Chemical stabilities under various gas impurity conditions /
Subtask 4.3. Electrical Conductivity and Conductivity Relaxation Experiments 8
Task 5. Fabrication of Single Cells Using the proposed cathode (Gopalan) 8
Task 6. Electrochemical Testing and Polarization Modeling (Gopalan) ©
Subtask 6.1 Electrochemical testing £ §
Subtask 6.2 Polarization Modeling =
O

Task 7. Long-term degradation test (Gopalan)
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Materials Level Research

"Phase Stability (Thermodynamic Investigation)

“Microstructure (Core-shell structure)
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Experimental procedures
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CALPHADP-YS+experimental Investigation

Thermodynamic Databases
- Database Focusing on Perovskite/R-P phases

> Database Expanded to Consider Gas Impurities

Locations Cathode materials Gas impurities
surf LSM CO,

b LSCF H,0

TPB LNO Cr
Etc. SO,
Multiple Impurities
Cr +H,0
SO, +Cr+H,0

SO, +Cr+H,0+CO,
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Example of Thermodynamic Investigation

; i P(S0,)=10"atm | & -
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Example of Thermodynamic Investigation
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Additional Examples

Both surface and TPB were considered
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Conclusions from Thermodynamic Investigatlons

The impact from single impurity:

CO2 No impact to LNO
No reaction with LSM at operation temperature, but SrCO3 may form during thermal cycles
LSCF has worst CO2 resistance

Cr LSCF: SrCrO4 prefers to form on the surface
LSM: Cr preferred to react with Mn
LNO: no impact on TPB, but will decompose on the surface

H20 It is mainly helping increasing the Cr gas species concentration

SO2 LSCF: LSCF has bad S tolerance
LSM: S prefer to react with Mn on the surface
LNO: very sensitiveto S

The impact from multiple impurities

The reaction under SO2+Cr can be different from which under single impurities
Accelerated stress tests (AST)

The reaction mechanism under AST and real operation condition may be different
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Core-Shell Microstructure

Molten salt synthesis (MSS) is being pursued to
synthesize core-shell structures of cathode
materials; the goals are two-fold

> High performance

> High tolerance to attack by Cr-impurity from ferritic
stainless steel interconnect

Shell

The core materials are excellent MIECs such as
LSCF and LNO; and the shell materials we want to
explore are LSM (for high performance) and LSCr
(for high Cr-impurity tolerance)
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Experiments to date

o LSCF (core) — LSM (shell) [Core-Shell nanoparticles or CSNP]

> Symmetrical cells of the configuration LSCF (core) — LSM (shell)/GDC/ LSCF (core) —
LSM (shell) and LSCF/GDC/LSCF have been fabricated

> Impedance spectra of these cells have been obtained as a function of temperature
and oxygen partial pressure

o Significant reductions in electrode polarization were observed in electrodes
featuring the core-shell electrodes compared to standard LSCF electrodes

o A new method using the molten salt method has also been
developed which coats the LSCF surface continuously

(invention disclosure filed)

> Symmetrical cells of the configuration LSCF — LSM [new method]/GDC/ LSCF — LSM
[new method]

> The new coating method results in even more significant polarization reductions
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Impedance Tests
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Sintered Substrate compared to New MS Met
Substrate (LSCF) New Method (LSCF coated with LSM)

W

200 nm Mag= 2500KX EHT= 3.00kV Signal A= InLens SignalB=S8E2 :_ = f‘ 200 nm Mag= 40.00KX EHT= 3.00kV Signal A= InLens SignalB=InLens
I I WD= 55mm Aperture Size = 30.00 um StageatT= 0.0° Date :26 Jan 2020 N 35 I 1 WD= 50 mm Aperture Size = 30.00 ym StageatT= 0.0° Date :22 Sep 2021
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Summary and Future Work

1. The impact of single impurity and multiple impurities to the cathode surface and TPB was
systematically investigated with CALPHADPLYS and thermodynamic experiments

2. The accelerated stress tests may have different mechanism than the real operation.

3. Core-shell nanoparticle electrodes prepared with two different molten salt synthesis result in
significantly reduced polarization resistances.

4. Cells of the type Stainless steel current collector/LSCF (Core)-LSCr (Shell) /GDC/ LSCF
(Core)-LSCr (Shell)/Stainless steel current collector will be fabricated

5.  The impedance spectra of such cells will be obtained as a function of temperature and oxygen
partial pressure

6. We also plan to apply a constant DC current to these cells and investigate the polarization of
the cells over 500 h
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