

Computationally Guided Design of MULTIPLE Impurities Tolerant Electrode

Rui Wang¹, Ben Levitas², Jane Banner², Srikanth Gopalan², <u>Yu Zhong¹</u>

> ¹Worcester Polytechnic Institute ²Boston University

> > 11/16/2021

- 1. Introduction
- 2. Novel Integrated Approach and Objectives
- 3. Tasks and Deliverables
- 4. Detail Deliveries
- 5. Summary and Future work
- 6. Acknowledgment

SOFC Development

CURRENT LIMITATIONS with Trial-and-Error Approach:

- Characterization Detection of Nano-sized Secondary Phases
- Difficulty of Doing In-situ or In-operando Observation
- Detailed Reaction Mechanism Verification (Is it valid to do Accelerated Test?)
- Real Impacts of Multiple Gas Species on Cell/Stack Performance

Novel Integrated Approach and Objectives

Phase I:

- Achieve the highest power densities of 1.5W/cm² at 800°C
- Achieve a degradation rate of 0.4%/1000hrs under realistic operating conditions with simultaneously present, <u>MULTIPLE</u> impurities at the <u>cell level</u>.

Phase II:

• Achieve a degradation rate of 0.1%/1000hrs at the stack level

Tasks and Deliverables

Materials Level Research

Phase Stability (Thermodynamic Investigation)

Microstructure (Core-shell structure)

CALPHAD^{PLUS} Approach

Experimental procedures

CALPHAD^{PLUS}+experimental Investigation

Thermodynamic Databases

- Database Focusing on Perovskite/R-P phases
- Database Expanded to Consider Gas Impurities

Example of Thermodynamic Investigation

SrSO4 will form at low Electron peratsignad of isid fur Addriven threshold us and book will predicted the predicted three the shold us and the state of the predicted three th

Example of Thermodynamic Investigation

Additional Examples

Both surface and TPB were considered

Conclusions from Thermodynamic Investigations

The impact from single impurity:

Impurity	impact
CO2	No impact to LNO No reaction with LSM at operation temperature, but SrCO3 may form during thermal cycles LSCF has worst CO2 resistance
Cr	LSCF: SrCrO4 prefers to form on the surface LSM: Cr preferred to react with Mn LNO: no impact on TPB, but will decompose on the surface
H2O	It is mainly helping increasing the Cr gas species concentration
SO2	LSCF: LSCF has bad S tolerance LSM: S prefer to react with Mn on the surface LNO: very sensitive to S

The impact from multiple impurities

The reaction under SO2+Cr can be different from which under single impurities Accelerated stress tests (AST)

The reaction mechanism under AST and real operation condition may be different

Core-Shell Microstructure

Molten salt synthesis (MSS) is being pursued to synthesize core-shell structures of cathode materials; the goals are two-fold

- High performance
- High tolerance to attack by Cr-impurity from ferritic stainless steel interconnect

The core materials are excellent MIECs such as LSCF and LNO; and the shell materials we want to explore are LSM (for high performance) and LSCr (for high Cr-impurity tolerance)

Experiments to date

LSCF (core) – LSM (shell) [Core-Shell nanoparticles or CSNP]

- Symmetrical cells of the configuration LSCF (core) LSM (shell)/GDC/ LSCF (core) LSM (shell) and LSCF/GDC/LSCF have been fabricated
- Impedance spectra of these cells have been obtained as a function of temperature and oxygen partial pressure
- Significant reductions in electrode polarization were observed in electrodes featuring the core-shell electrodes compared to standard LSCF electrodes
- A new method using the molten salt method has also been developed which coats the LSCF surface continuously (invention disclosure filed)
 - Symmetrical cells of the configuration LSCF LSM [new method]/GDC/ LSCF LSM [new method]
 - The new coating method results in even more significant polarization reductions

Impedance Tests

Sintered Substrate compared to New MS Method

Substrate (LSCF)

New Method (LSCF coated with LSM)

Summary and Future Work

- 1. The impact of single impurity and multiple impurities to the cathode surface and TPB was systematically investigated with *CALPHAD*^{PLUS} and thermodynamic experiments
- 2. The accelerated stress tests may have different mechanism than the real operation.
- 3. Core-shell nanoparticle electrodes prepared with two different molten salt synthesis result in significantly reduced polarization resistances.
- 4. Cells of the type Stainless steel current collector/LSCF (Core)-LSCr (Shell) /GDC/ LSCF (Core)-LSCr (Shell)/Stainless steel current collector will be fabricated
- 5. The impedance spectra of such cells will be obtained as a function of temperature and oxygen partial pressure
- 6. We also plan to apply a constant DC current to these cells and investigate the polarization of the cells over 500 h

Department of Energy (DOE)

- This material is based upon work supported by the Department of Energy under Award Number DE-FE0031652.
- Program managers, Jason Montgomery and Venkat K. Venkataraman

Thank you !