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[l Project Goals

« Accumulate ~3,000 hrs operating a reversible SOC system
— An SOEC system currently being fabricated at INL will be modified to

$0.18 SOEC stacks, Decommissioning,
’ Replacement, Other var. O&M

$0.09 Comp. & del.
$0.09 Steam

create a reversible solid oxide (rSOC) system with 30-kW $1.50 $0.22  Other costs
electrolysis mode/10-kW fuel cell mode operation
— SOC stacks will incorporate improved catalyst in fuel electrode Fixed O&M

— Operation of rSOC system will be coupled to a Thermal Energy
Distribution System (TEDS) that will be configured to mimic
industrial source of low-grade heat

« Thermodynamic analysis will demonstrate potential to
achieve > 85% system efficiency in electrolysis mode

« Technoeconomic analysis (TEA) will demonstrate potential s
to produce hydrogen at a cost of $2/kg on a cost of
electricity of $30/MWhr.

* Project Start Date: 10/01/2020

$1.00

Electricity

LCOH (5/kg-H,)

* Project End Date: 9/30/2022 50.00
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* DE-FOA-0002300 AIO 2: I

— Improving the cost, performance and reliability
of reversible solid oxide electrolysis/fuel cell
(rSOC) systems for clean hydrogen and clean
power production

- rSOC systems have many opportunities to enter
the marketplace but need proven system cost, )
performance, and reliability

— rSOC systems can use the same system
components (stacks, heat exchangers, piping,

Steam

L Fertilizer
Low Emissions

Fertilizer Plant ﬁy/_ 1

Storage

all =
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Electricity

Ethanol Plant
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Synthetic Fuels &
Lubricant Plant

power converters, etc.) to reduce capital cost ] — (Ggfgrg'c;‘e)
and maximize equipment capacity factor (% of Pe;;ﬁfﬁgr”;@
time at maximum power) l

— May be deployed at small scale to meet needs | piugn Etectric venicles Med'“m&“eavy Duty Fuel Cell Internal Combustion Engine Vehicles

of diverse users for clean energy utilization, 2@@ B . %% Q‘

storage, and supply (supports environmental

justice) @2@ g_? — ——

* Full design of BOP system will be open-access
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Jl Approach (New Project)

* Task 1: Revise Project Management Plan
» Task 2: Stack manufacturing (OxEon)
» Task 3: e Catalyst Development (MIT)
* Task 4: Reconfigure 50 kW SOEC system

* Task 5: System integration and testing
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» Task 6: Technoeconomic Analysis

- Task 7: Data analysis o) |I“|“““!. LI

eeeeeeeeeeeeeeeeee (MW /year)

Production Cost ($/kW)

* Task 8: Final Report -l
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Il OxEon Energy, LLC

Utah R&D/Mfg Facility — Founded in 2017 after successful

30-year collaboration with founders of previous affiliation
« New 24,000 ft2 (2230 m?) office, laboratory, and manufacturing facility
* NASA, DOE, DOD and Commercial funding
» Tape casting, cell and stack production, and testing
* End-to-end power to synfuels pilot plant in operation

Solid Oxide Fuel Cell and Electrolysis Stacks
* Longest running solid oxide fuel cell & electrolysis group in world
* Only flight qualified, TRL 9 SOEC unit in history
* 30kW/10kW reversible system test program in process

Rer:oﬁyvable Energy Low Value Fuels

Methane
LPG

Solid Oxide

Fuel Reformation and Generation mececel =R
* Plasma Reformer — H, and Syngas for flare curtailment sots o

* Fischer-Tropsch Reactors — Modular design for transportation fuel
production from H, and Syngas

Electricity Fuels




Jlll OxEon’s Solid Oxide Heritage

Key Milestones 8y
200 Cell Stack at ABB, Switzerland

Y 1986 - SOFC R&D began
Y& 2002 - Solid Oxide Electrolysis R&D began

1993
1.5 kWatt PNG Unit
1992 1996
100 Watt Direct CH4 1.2 kW Unit POx reformed Diesel/Kerosene

) 1

Ye 2003 — OxEon founders and INL co-authored W=

<UL | il M T I M | | | |
initial nuclear hydrogen proposal that started 1988
our nearly 30-year collaboration 1986 1991Y1993 1998
% 2017 - OxEon Energy formed to develop 1990 NorCell
commercial products and build on ISRU 1986 EPRI 1994
developments Ceramatec GRI 1987
DOE - METC 1990 SOFCo
- Cumulative Solid Oxide R&D investments Sulzer-HExis  ~ McDermott-Ceramatec JV
>$150 Million with founders' participation 2016 - 2019
Co—authorezc?oN3HI o . E?eojrdyzer DOE: High Temp Water Splitting
2001 with INL 2006 2010

Co-Fired Trllayers 2kW CO2 EIectronzer

Low Electrolyzer Degradation

2013 - 2017
DOE: Bio-Oil Electrolysis

4 F h
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2000 2001 zoo 2003 2004 2‘005 2006 2007 2008 2009 2010 2611 2012 2013/ 2014 2315 2016 2017 918 2019
1999 2019

2005 - 2011 ; ( % o |

2002 - 2004 20102013 I (U ))( E on
ONR/DOE: Conoco Phillips SOEC
SBIR & SECA Contracts: . 2014 - 2017 energy
1999 Co-fired Cell il Steam-CO2 Electrolysis

McDermott DOE-NETL o-fire ells, Low Temp Materials NASA: MOXIE Beyond Current Potential



Il Stack manufacturing (mo-12)

OxEon stacks for this project are suitable for electrolysis and fuel cell
operations as well as other applications

Renewable Low Value
Energy Fuels
Solid Oxide Electrolysis Cell
y " Electricity Transportation
& Fuels
OxEon scaled the MOXIE Mars stack
for terrestrial applications. ol org - Fischer-Tropsch Reactor
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Further Use of OxEon SOC stacks: (©xEon
Bio-CO, to E-Fuels

Steam from FT

OxEon Solid Cooling

Oxide Co-
Electrolysis

Syngas

co,
OxEon

Modular FT

Existing EPT

Waste Food Separated biogas
Digester

O, Enriched
Sweep air

Synthetic Liquid Bio-Fuels

Produced Water

OxEon ATR
Plasma
Reformer




Catalyst Development & Stack Manufacturing

B (10-12)

Prof. Bilge Yildiz’s group at MIT is addressing
catalyst performance and stability. —

Electrolyte, electrode, catalyst, cell and stack production
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Curren

1000
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Button Cell Steam Electrolysis at 1.3 V

OxEon button cell with catalyst

.

T

OxEon baseline button cell

MIT-developed MIEC material showed higher initial
performance than cells with standard materials set

40 a5
Test Time (hrs)

50 55

65

Electrode / # Powder Batches % Complete
Coating Material
Ceria underlayer NZZ?;d Complete Incl);AIn Powder | QA Ink
Air electrode 6 (3 & 3)* 3 83% 100%
Air-sid t

ir-side curren 3 ) 67% 67%
collector
Fuel electrode 7 2 5 100% 71%
Int t

n enfconnec 9 4 5 100% 56%
barrier powder
Ceria underlayer 12 5 N/A 42% N/A

*3 lots for underlayer, 3 lots to mix with air electrode




ll System Design and Integration (mMo-12)

System integration plans have been modified to
accommodate concurrent operation of other

demonstrations:
— 100-kW Bloom Energy SOEC system (installed Sept. 2021)
* Planned operation thru Sept. 2022 (~5,000 hrs)
— 250-kW FuelCell Energy SOEC system (expected

installation May 2022; funded thru FOA-0001817)
« Planned operation thru Sept. 2023 (>5,000 hrs)

- 50-kW SOEC system funded by HFTO

« Planned operation thru 2023 with stacks from multiple vendors

— 30-kW electrolysis mode/10-kW fuel cell mode operation =
 This project. Basic build of system is funded by HFTO, A e = - 0= 4
and this project funds customized parts for reversible All demo systems will share a common

operation, such as heat exchangers, bypass lines, stack  support facility for power and steam
: supply as well as product gas processing
connections.
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Jllll System Fabrication & Integration (Mo-12)

- Fabrication of 50-kW system almost complete &

 Fabrication of 30-kW rSOC system will start in Nov. 2021

« Basic support facility, including power supplies and steam
generation, and low levels of hydrogen drying, dilution and
exhaust are nearly complete

« FlexEnergy has redesigned the heat exchangers to
reduce cost for high throughput manufacturing. Four
different units have been tested to verify suitability for
scaled-up manufacturing

* New heat exchangers are sized for 100-kW SOEC/15-kW
SOFC

SOC support facility installed in a cargo container,
including CE+T Americal Power Converters (150 kW)
and Chromalox CSSB-100 steam generator

Heat exchanger fabricated
by FlexEnergy for the 50-
kW SOEC system

@)(Eon IDAHO NATIONAL LABORATORY
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I Approach — Task 6: Technoeconomic Analysis
(M15-20)

Thermodynamic analysis will demonstrate potential to

achieve > 85% system efficiency in electrolysis mode

— Existing 50-kW SOEC system design achieves theoretical 90%
DC electrical efficiency

Thermal Fluid

: : - : : 7N
— Potential to achieve >85% system efficiency will require 0 @)
TEDS Steam
» Very high AC-DC converter efficiency (96%) W_,%D senerater &
* Re-use of unconsumed steam &
* High- and low-temperature heat recuperation cecrcty [
(not fully shown in figure) e
* Very low thermal losses (usually associated with
large commercial systems) «—m@
Fuel Condensate 21y 400 Electricity
Coolant Inlet ~f—
Mo(:z:a;tu:‘lu::; @
Air Outlet AN
i — 304
X

300
Air Inlet \/

Electricity

|
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Approach — Task 6: Technoeconomic Analysis
(M15-20)

$400

B Material Costs

i Mfg Costs (w/o Labor)
$350 mm Labor Costs

Tooling Costs

Technoeconomic analysis (TEA) will demonstrate
potential to produce hydrogen at a cost of $2/kg on a

cost of electricity of $30/MWhr

— Will follow methodology developed for previous INL and Strategic
Analysis reports
— Target areas for improvement will be O&M costs, SOC stack

costs, other costs, and steam costs 3150
INUEXT.19.56305 5100
Evaluation of Hydrogen 35
Production Feasibility for a
Light Water Reactor 1)
25 50 75

$300
mm Contingency

2250 -@-Total Cost

$200 S78/kw

100 200 350 500 650 825 1,000

Production Cost ($/kW)

o

in the Midwest

Yearly Manufacturing Rate (MW/yr)

Konor Frick, Paul Talbot, Daniel Wendt, Richard

s o Total manufacturing cost of SOC stacks using electrode-

Amgad Exgovainy, Troy Havkin (ANL) supported cells. Source: Strategic Analysis Report to INL: Solid
Oxide Electrolysis Stack Manufacturing Cost Analysis (Interim

T, Report) April 2021.
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ll Remaining Challenges and Barriers

» Challenge: Multiple SOC systems are being tested in a shared facility
— Bloom >100 kW system: plan to start testing in Nov. 2021 (press release in May)
— HFTO 50 kW open-architecture SOEC system (18t unit): start testing in Jan. 2022
— 30 kW rSOC system (2"d unit, this project): plan to start testing in Mar. 2022
— FuelCell Energy 250 kW SOEC system: plan to start testing by June 2022

« Challenge: Manufacturing delays

— Fabricators have had weld qualification challenges (now performing 100% x-ray radiography on
welds with design temperature >500 °C)

— COVID-19 issues have slowed procurement
« For example, >10 month delay obtaining heat exchangers

~
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Project Month
3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Bl Proposed omte. = :

Procure materials Q OxEon

F u t u r e Cell manufacturing INL
Stack assembly | Shared OxEon/INL
3. Materials Development ¢ >
WO r k Catalyst infiltration I | | I oMiIestones

Electrochemical characterization I | | | |
4. Reconfigure 50 kW SOEC System |« > 0 Go/No-Go Points

Tasks 1-3 delayed ~3 months | pesign 1 @
due to contracting and delays | f&neers
Instrumentation & controls

with 1st 50 kW SOEC System Fabrication
- Anticipate being back on Detailed physics modeling

0t 9

5. System Integration & Testing >
schedule by Month 15 BOP testing
Stack installation
Go/No-Go Decision (M12) Commission w/ stacks D
-~ Need stacks & BOP ready for | o0 — T
. . . : reliminary design (complete
installation; project has 4 Dynamic tests w/ DRTS yaese
month cushion to still meet Next 2,000 hours- 2.1 (Me6) Receive materials for cell fab (complete) 72707 _
end-of-project date S;I::mnii:mm'c Asses 31 (Me6) Prepare samples for MIEC tests = é g
— Will be able to take advantage | stacklevel 4.3(M12) Go/No-Go. SOEC stack assembly & system
; ; Scale up
of Ieam'_ngs frpm developing Syngas assesment 5.3(M15) Commission system with stacks
and testing prior 50 KW SOEC |3, pata analysis < >

_ 6.6 (M18) Complete 500 hrs testing w/ DRTS
System System data analysis | | | | | |
Post mortem analysis 6.2 (M21) Complete 2,000 hrs and TEA

: 8. Final Report 4—@
@.)( EO n 8.1 (M24) End of Project final report
15 wergy DAHO NATIONAL LABORATORY




ll Summary

» Task 2 — Stack manufacturing
— OxEon is manufacturing 30-kW rSOC stacks (previously manufactured >15-kW SOC stacks for INL)

Task 3 — e? Catalyst development
— New catalyst nanoparticle exsolution will substantially lower the polarization resistance and improve stability

Task 4 — Reconfigure 50-kW SOEC system

— First 50-kW SOEC system will be commissioned by Jan. 2022

— Design for second system has been modified; will be commissioned for rSOC by Mar. 2022
Task 5 — System integration and testing

— System will be integrated with low-grade heat source and operated for >3,000 hrs

— System will be instrumented to measure thermodynamic performance
Task 6 — Technoeconomic & thermodynamic analysis

— Thermodynamic analysis will demonstrate potential to achieve > 85% system efficiency in SOEC mode
— Technoeconomic analysis (TEA) will demonstrate potential to produce hydrogen at a cost of $2/kg on a cost
of electricity of $30/MWhr.

©xEo
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Il Technical Backup Slides and Additional
Information
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Jllll OxEon’s Collaboration with INL

2021
Supporting H2@Scale & Hydrogen Shot Vision

rventonal Stoage Trare

2003 2020
OxEon & INL co-authored initial 10kW SOEC Module (4x 65-cell stacks) delivered to
nuclear-H, proposal that started INL for testing in 2021

our collaboration

2002 2007 2012 2017 2022

Integrated Laboratory Scale (ILS) Test . ) )
290 cells. three 4-stack modules. 60-cell stacks 5kW SOEC Module tested at INL 30kW reversible SOEC/SOFC system in production

Produced 5.7 Nm3/h H2, 17.5kW Achieved SkW target Vop < Vtn
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olid Oxide Propelled Space Exploration

B hir

Jet Propulsion Laboratory

NASA funded flight program
e Only flight qualified SOEC in history
M -@/ﬁ\ E * Only TRL9 SOEC device in history
* First production of oxygen from the Mars atmosphere

 Six successful SOXE (SOEC) runs on Mars that matched expectations from
model and testing on earth

Mars Oxygen e
ISRU Experiment

MOXIE SOXE TEAM:
*  MIT: Program prime and science team lead
* JPL: Systems integration
*  OxEon: Stack development and production
e TRL3to 6in 18 months!!
 Hermetically sealed, ruggedized stack capable of
withstanding launch, entry, descent and landing

Active OxEon Projects with NASA for Next Generation

* Mars: Oxygen and Methane Production from co-electrolysis ( _ "

* Lunar: Liquid Propellants for LH2/Lox-Fueled Cislunar Transport @)( 583
* SBIR: Cathode Development for Redox Tolerance K/

Beyond Current Potential




Jl Current Solid Oxide Projects

NASA

— Mission scale stacks for CH, & O, propellant production on Mars
- LOx & LH, propellant production from lunar polar crater ice
- Redox-, thermal cycle-,and coking-tolerant electrode

Commercial
— Private microgrid reversible 20kW SOEC/10kW SOEC system

DOD
— Bi-propellant fueled SOFC system for Air Force Research Lab/ University of New Mexico

DOE
— NETL program — SOEC for low cost hydrogen production (with PNNL)
— BETO Biogas to Liquids CO2 steam co-electrolysis
— Preparing to test 10 kW HTSE at INL
— Building reversible 30 kW SOEC/10 kW SOEC for INL installation

IDAHO NATIONAL LABORATORY




Jl Stack manufacturing (OxEon) (Mo-12)

Stacks for this project are suitable for electrolys and fuel cell operations as
well as other applications

OxEon 30kW electrode and interconnect coating powder and ink production status.

Electrode / Coating Material

# Powder Batches

# Power Batches In

% Completion

Ceria underlayer Total n Complete oL QA Ink Powder QA Ink
Needed Progress Ink(s)

Air electrode 6 (3 & 3)* 1 3 83% 100%

Air-side current collector 3 1 2 67% 67%

Fuel electrode 7 2 5 100% 71%

Interconnect barrier powder 9 4 5 100% 56%

Ceria underlayer 12 2 5 N/A N/A 42% N/A

*3 lots for underlayer, 3 lots to mix with air electrode
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