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* Baseline nanostructure degradation induced by Cr poisoning
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Cr-Poisoning SOFC Cathode & Interconnect Coating

Commonly used metallic interconnect materialss

= Ni(Fe)-Cr based heat resistant alloys, Cr-based alloys, and chromia-forming ferric stainless steels.
= Contain Cr to form a protective chromium oxide scale Cr,O;

Volatilization of Cr species strongly depends on oxygen partial pressure.
Vaporization of Cr species on the SOFC fuel side anode could be neglected.

Cr deposition & poisoning of SOFC cathode:
= Volatile Cr species, such as CrO, and Cr(OH),0,, are generated in oxidizing atmospheres.

= Volatile Cr species react with the cathodes, causing rapid cell degradation.
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Development of Cr Tolerant Cathode via Infiltration or Coating

For commercial $OFCs with well-developed materials sets, Cathode Cr-

resistance can be improved through solution-based infiltration or cathode

surface coating.

$tructural requirements of Cr-tolerant surface coating layer on $OFC cathode:
o Deeply penetrating into the active layer of the cathode.

e Uniform and conformal on the internal surface of the cathode active layer that possess
complex three-dimensional topographies with high aspect ratio, and the TPBs.

o Intimate adhesion and bonding to the cathode surface at atomic scale without spallation.
Coating Film depotsition to facilitate the Cr~tolerant cathode through coating:
Magnetron sputtering, sol-gel dip-coating, and electro-deposition techniques used for
applying protective coating on ferritic stainless steel interconnects:

- Involving physical vapor deposition or liquid solutions.

— Having the limitation of not deeply penetrating into the cathode active layer or not
providing the conformal coating on cathode surface.

— Not ideal for infiltrating and coating the internal surface of porous cathode.

Atomic Layer Deposition: Chemical vapor deposition technique that sequentially applied
atomic mono-layers to a substrate, typically alternating compounds to produce a locally
balanced atomic distribution of target material.

ALD is uniquely suitable for coating uniform and conformal films on complex
three~-dimensional topographies with high aspect ratio.

Jiang, S. P. & Chen, X. Chromium deposition and poisoning of cathodes of solid oxide fuel cells — a review. Int. ). Hydrog. Energy 39, 505-531 (2014).




Development of Cr Tolerant Cathode Through ALD Coating

For a commercial SOFC with well-developed materials set, Cathode Cr-resistance can be
improved through ALD coating.

ALD is uniquely suitable for depositing uniform and conformal films on complex three-
dimensional topographies with high aspect ratio.

Two Alternative Approaches to Mitigate Cr Poisoning
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Technical challenges for ALD coating of Cr resistance layers

$tructure requirement of Cr-tolerant surface coating could be satisfied by
ALD:

M Deeply penetrating into the active layer of the cathode.

M Uniform and conformal on the internal surface of the cathode active layer, that possess

complex three-dimensional topographies with high aspect ratio, and the TPB:s.

M Intimate adhesion and bonding to the cathode surface at atomic scale without spallation.

Functional requirement of Cr-tolerant surface coating layer on $OFC cathode:
® Cr-inert ALD coating layer should not impair the electrochemical reactions taking place on

the cathode surface.

Ideal Cr-inert ALD coating layer should possess the multiple functions ofs
® Conformal on internal surfaces of backbones, prevent Sr out diffusion and Cr inward diffusion.

® Highly active towards electrochemical reactions.
® Super stable upon the long term electrochemical operation at high temperatures.

TPBs

=
~
5
Y

Conformal & uniform ALD layer

E

‘: Cr-tolerant &
/ multi-function

TPBs =9 TPBs

_____



OVERVIEW

> ALD-Enabled Chromium Tolerant Air Electrode

L$M/Y$Z CATHODE

 LSM/YSZ: Baseline Performance & nanostructure degradation induced by Cr poisoning



Severe Degradation of LSM/$$Z Baseline Cell Upon Cr Contamination
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* Little change of series resistance R..
* Large increase of the polarization resistance R,
* R, increase could be related to activity loss of oxygen reduction reaction at TPB.



As-Received LSM Baseline Cell Cathode: Typical Nanostructure
' Without Cr

Baseline without Cr contamination.
* Intact clean LSM/YSZ interface.
* No formation of the nano-scale MnO,, SrO,, or La,O; phases.

Baseline with Cr contamination: Original TPB and L$M/$3$Z Interface Degradation.

* Internal cracking initiated from the original triple phase boundary (TPB) and propagated along the
internal interface between Sc-stabilized ZrO, (S5Z) and LSM.

* Inthe local SSZ/LSM interface region that there is no apparent internal cracking, there are internal
nano-pores that are elongated along the SSZ/LSM interface.

* Intragranular structure has spherical nano-pores, while the SSZ grains remained to be intact.



Cr Contamination: Nanostructure Degradation of LSM/$$Z Baseline Cell

Atomic% () La $r Mn Zr Cr Formulation
44 66.37 12 3.1 15.14 3,39 La0.755r0.;MnCrp 220,
45 71.89 10.37 2.53 14.76 0.46  LdosSro M 14Cro0aOx
46 68.01 1.99 323 16.65 012  LaSrMn,,Cr, O,
47 73.06 735 7.15 3.85 0.79 7.8 LaSrMn,Cr, O, + ZrO, (w10 % Sc,0,)
48 69.81 2.76 345 19.29 3.48 121  LaSrMn;2sCra40x+ ZrO; (W 9 % Sc;03)
49 7134 10.66 2.69 15.31 La.85r.2Mn1.150x
50 63.35 0.82 29.84 6 ZrO2 (w9 % Sc,0;) +tMn.03
51 70.96 27 414 7.43 1.75 13,04 CrOx enriched
52 76.77 273 2.94 12.46 5.11  CrOx enriched
53 73.19 9.96 244 12.78 163  LagSr,Mn,.Cr..O,
54 66.96 0.96 27.55 4.54

Doped ZrO, and L$M interface also show nano-pores.



Cr Contamination: Nanostructure Degradation of LSM/$SZ Baseline Cell
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Original TPB Degradation & Formation of (CrMn)O, on $3Z grain surfaces
* Additional (CrMn)O, enriched crystals appear to nucleated at the original TPBs.
» Additional (CrMn)O, enriched crystals appear to grown on SSZ grain surfaces.

Applying an ALD coating layer on the internal surface of cathode: Ideal Cr-inert should
possess the multi-functionality ofs

e Fully conformal to prevent Sr outward diffusion and prevent Cr inward diffusion.
e Highly active towards electrochemical reactions.
e Super stable upon the electrochemical operation at elevated temperatures.

Choice of Cr tolerance ALD Layer: Mn,,Co, O, is ordinary interconnect coating materials, excellent layer to prevent
Cr penetration.




OVERVIEW

> ALD- Enabled Chromium Tolerant Air Electrode

L$M/Y$Z CATHODE

* Cell power density & longevity increase introduced by an ALD coating

 ALD-enabled Significantly increased power density & durability against
contamination



Structure Requirement for ALD Layer: Fully Conformal and Uniform

Original é;l

TPBs

ALD layer

o

YSZ

Original
TPBs

After operation at 750C for 120 hours:
e Stable nanostructure at ALD layer are at active layer and at the cathode-electrolyte interface.

e Conformal & uniform; ALD layer is with nano-pores for gas penetration; Covering the original TPBs.



Structural Requirement for ALD Layer: Enhancement Cell Performance

Large 380% power density enhancement of commercial SOFCs
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Tuning the Cell Performance by Adjusting ALD Layer Thickness (no Cr)

10 nm thick MnCoO, capping ~ 3 nm Pt particles 20 nm thick MnCoO, capping ~ 3 nm Pt particles
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10 nm ALD layer, peak power density is 380% of baseline. 20 nm ALD layer, peal power density is 280 % of baseline.



Stable Performance of ALD Coated Cell Upon Operation With Cr

Terminal Voltage (V)
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Rs and Rp (taken at 0.3 A/cm?) changes

Operating Rs Rp
time (h) (Qcm?) (Qcm?)
44 0.06 0.304
68 0.058 0.328
168 0.058 0.354
236 0.055 0.381

LSM/YSZ with ALD coating of 20 nm Mn, ;Co, ,O, layer, operation
with Cr contamination.

Zero hour: peak power density is 280 % of baseline @ zero hour;
168 hours: peak power density is 200 % of baseline @ zero hour.



Comparison of Baseline & ALD Coated Cells Upon Cr Contamination
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Baseline Cell: Peak power density remained to be 36% of baseline @ zero hour after 109 hours operation.

ALD coated ones Peak power density remained to be 200% of uncoated baseline @ zero hour after 168 hours
operation. ALD coated cell power density is ~ 600% of that baseline cell upon operation with Cr contamination.

Cr tolerance: Large performance enhancement (> 200% power density) by ALD coating of Cr-tolerant Mn, ,Co,,O,
and remained to be stable even operation with Cr contamination.



OVERVIEW

> ALD Enabled- Chromium Tolerant Air Electrode

LSCF/$DC CATHODE

* Baseline nanostructure degradation induced by Cr poisoning



Cr contamination: Different Degradation between LM and LSCF based Cells

LSM with
Cr-109 hours

LSM-baseline, as received

Accelerated Sr segregation induced by Cr contamination



Cr contamination: Different Degradation Mechanisms from LSM & LSCF Cells

Accelerated Sr segregation induced by Cr contamination

LSCF-SDC cathode nanostructure degradation caused by Cr-contamination.
e (SrCr)O, are filling the original pores of the LSCF/SDC after 256 hours operation at 750°C.
e Formation of (FeCo)Ox nano-grains at LSCF/LSCF surface grain boundaries.

ALD layer on LSCF/SDC backbone ideally needs to be conformal to prevent the Sr
evaporation/Segregation and their further interaction with Cr vapors.




SUMMARY
LSM/YSZ or LSM/$SZ based cells:
> LSM/$SZ baseline performance & nanostructure degradation by Cr
* Peak power density loss of 64% after 109 hours operation. Dramatic increase in R,..
» Cracking at LSM/$SZ interface, LSM grains. $$Z remains intact, but with (CrMn)O..
» ALD coating (MnCo0)O, /Pt dramatically improves the Cr resistance
= Powerdensity is 280-380% of the baseline cell depending on the ALD layer thickness.

= For cell with a 20 nm thick ALD layer, there is a large performance enhancement (>
200% power density) induced by ALD coating of Cr-tolerant Mn, ;Co, ,0,.

= For cell with 20 nm thick ALD layer, after 168 hours at 750°C power density of ALD-
coated cell is ~ 600% of that baseline cell upon operation with Cr contamination for 109
hours.

LSCF/SDC cells:
» LSCF/SDC baseline performance & nanostructure degradation by Cr

= With the Cr source, there is no apparent $r surface segregation phase even for the
baseline cell operated for 3000 hours at 750°C.

= With the Cr source, there is significant amorphous (5rCr)O, phase accumulated in the
original pore region.

+* There is completely different nanostructure degradation mechanisms between LM and
LSCF cells induced by Cr contamination.

+ LSCF based cells ideally need the conformal ALD layer to prevent $r migration and Cr
contamination.
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