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Program Objectives sosc g e

» Develop a comprehensive understanding of the origin, formation processes and the nature of gas phase airborne
contaminants present in the air stream entering elevated temperature electrochemical systems.

» ldentify trace airborne gas phase contaminants (intrinsic and extrinsic) and develop mechanistic understanding of
interactions (chemical, electrochemical and structural) with conventional air electrode materials.

» ldentify cost effective getter materials and processing techniques to capture trace contaminants. Synthesize and
validate getter performance and efficacy.

» Design and fabricate getters for stack and BOP applications. Validate the above at stack/ system level. Transfer
technology to industrial partners.
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Broader Impact: High Temperature Electrochemistry
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Broader Impact sosc g e

* Graduate / Undergraduate students being trained - 7 Application

e Post-doctoral fellows: 3 Terrestrial Space
e Outreach: Middle and High School, Davinci Program, STEM

v

* Undergraduate Internship: 4 DT LT
Training and Placement Advanced IT/HT Electrochemical Systems
Mr. Michael Reisert Bloom Energy SOFC/Power generation SOEC /H2Production
Dr. Ashish Aphale Asst. Professor, Kennesaw University

Mr. Justin Webster Collins Aerospace (Pratt & Whitney) > > i

Dr. Su Jeong Heo Post-doctoral Fellow, NREL Trace impurities- identification,

Dr. Boxun Hu Scientist, LBNL capture, device fabrication

Dr. Junsung Hong Post-doctoral Fellow, Northwestern University Y

Dr. Sapna Gupta Intel Corporation

Dr. Amman Uddin Assistant Professor, BUET, Bangladesh 02 separation

This project develops basic scientific and engineering understanding of electrode degradation processes arising due to the presence of intrinsic and
extrinsic gaseous impurities present in air stream. Research efforts also provide pathways for the mitigation of the cathode degradation. Low cost getters,
identified and fabricated, will be used in the stack and system to offer long term resistance to electrode poisoning.
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Broader Impact: Electrode poisoning in IT/HT Electrochemical Systems s tee

e Intrinsic and extrinsic trace gas phase contaminants
« Originating from BOP, Stack and cell components
* Ingested through water

.

« Vapors of Cr, B, Bi etc. from alloys/ seals
« Vapor of Si from water
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Broader Impact: Electrode Poisoning and SiO, Deposition
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Water containing SiOHx have tendency to deposit on catalytically active Ni surface. Surface coverage by SiO2 can promote

carbon deposition, pulverization and electrode poisoning.
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* Reduction in Py, leads to silica deposit formation
+ Silica deposition in the anode is dictated by H,O concentration profile
* Electrolysis mode may be more prone to SiO, deposition at FE-Elec interface

P. Singh and S.D. Vora “ Vapor Phase Silica Transport” Advances in Solid Oxide Fuel Cells: Ceramic Engineering and Science Proceedings, Volume 26, Number 4, 2008
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Electrode poisoning : Role of water and air borne contaminants
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HZ
Silica dissolution at site 1:  (solid-Liquid) [SiO,] +(H,0), = {Si(OH),}, (1)
Silica evaporation at site 2: (Solid-Gas) [Si0,] +(H,0), = {Si(OH),}, (2)
Silica deposition at site 3:  (Gas-solid) {Si(OH),}, = [SiO,] +(H,0), (3)

Water chemistry monitoring and control remains important for long term stable operation of electrolyzers. Electrode can
poison leading to increased polarization during long term.
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SrO and BaO interactions with Si vapor
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BaO (s) + Si(OH)4 (g) = BaSiO3 (s) + 2H20(g); AG = -489.486 kJ/mole

1.0E+01 SrO(s) + Si(OH)4 (G) = SrSiO3 (s) + 2H20(g) ; AG = -458.953 kJ/mole
1.0E+00

Sample calculation for BaSiO, (FactSage):
1.0E-01 =

AG = Gproduct _Greactant

P(H20)

1.0E-02 = (Ggasios T 2Gh20) — (GaotGsi(orya)

= (-1788366-2*448571) —(-646130-1549892)

——-SrO+H20(g)=Sr(OH)2
——Ba0O+H20(g)=Ba(OH)2

1.0E-03 —
= - 489.486 kJ/mole
1.0E-04 TABLE 4 R ded thermodynami ies of Si(OH 298.15-2000 K
500 550 600 650 700 750 300 . ecommended thermodynamic properties of Si(OH),(g) at 298.15-2
Temperature (C) Cpr s" Hy -Hj, (Gy - Hy /T,
T,K JK mol™'  JK™'mol™ kJ/mol J K™ mol™ G’ kJmol  AH'(T,)+ (H; - HY)
298.15 115.28 338.550 0.000 338.550 —1241.370 —1346.300
Uncertainty +132 +132 +2.34 +237
Thermocalc shows chemical interaction 500 144,83 406.252 26687 352,878 _1316870 1319613
between cations and Si(O H )4 1000 170.32 516.118 106.657 409.461 ~1549.892 ~1239.643
1500 182.95 587.723 195.169 457.610 —1826.846 —1151.131
2000 191.24 641.607 288.922 497.146 -2134.723 -1057.378

Cy/R (298.15-2100 K) = 27.4945 = 622157 x 107°T +4.34739 x 1077 = 9.07719 x 107" - 448699 x 10°T"" + 2.58937 x 10°"

Plyasunov, A. V., Zyubin, A. S., & Zyubina, T. S. (2018). Thermodynamic properties of Si (OH) 4 (g) based on combined experimental and quantum chemistry data. Journal of the American Ceramic Society, 101(11), 4921-492
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SrO and BaO interactions with Cr vapor
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— Co0O+CrO,(OH), = CoCrO, +H,O
— SrO+Cr0,(OH), = SrCrO, +H,0
— BaO+CrO,(OH), = BaCrO, +H,O

200 400 600
Temperature (°C)

800 1000

0 300
-100 —Co00 + Cr203 = CoCr204 200
200 —SrO + Cr203 + 1.502(g) = 2SrCrO4 100
5 -300 —2Ba0 + Cr203 + 1.502(g) = 2BaCrO4 § 0
oY = -100
< -400 <
200
-500 300
-600 -400
-700 -500
0 200 400 600 800 1000 0
Temperature (°C)
presence of Cr,O4 or Cr vapor exposure

The calculations confirm the thermodynamic feasibility of stable CoCr,O,, BaCrO, and SrCrO, formation in the
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Getter selection for multi-contaminant systems

Capture of gas phase impurities by ‘Getters’ based on Gibbs free energy and equilibrium constant k. Unit solid phase activity assumed

’g 1.E-03500 700 agp  Capture of Cr ;E- 11.I::2:500 600 " 10000apture of 80, SrO CaO MnO zZn0O
@ 1E-07 —PCro2(0H)2(g) ® 1Eos —PS02(g) m850C  m550C
2 qp1 PCr-SrO 2 PS02-Sr0
® PCr-Ca0 o 1.E-12 PS02-Ca0 1.E+14
; 1.E-15 —PCr-Mn0O ; 1.E-16 PS02-MnO o
E 1E19 —PCr-Zn0 £ 1E20 —PS02Zn0 = LET
® e Temperature (C) e Temperature (C) : :§ %EH)B
5§ FE+05
1.E+00 | E g E+02
® 500 600 700 800 900 1000 @  1.00E-03500 700 900 Capture of Si a, %'
2 1.E-02 Capture of H;BO; 7 1.00E07 —Psi(Oh)4 o £1.E-01
EE il | _eimoso £ teeny———_ TTOTC T e
g l PHBO-Ca0 g 1.00E4 P(Si-MnO) o 1 E07
g 1.E-08 —— & 1.00E-1 B —P(Si-Zn0)
1.E-10 Temperature (C) 1.00E-29 — 7'-I'¢;|V11perature (c)
Transpiration tests Electrochemical tests : . . : —
e  —— Calculated ratio of partial pressures of various gas phase impurities over
- L, incoming i ] ! l their partial pressure in presence of getters at 850 and 550°C.
j— 1] ! contalmng . . oy s .
| o oya _‘i S0 00, G, || ] Extrinsic impurities SrO getter can lower the partial pressure of all gas phase impurities in
T GhE L Souroes of .5 550-950C.
2 Mass flow controller (MFC) “nT Si B Cr H3;BO3, Si(OH . . e o0 o
3 i g e e’ — Intrinsic impurities can be captured before entering stacks
¢ L Large amount (~200g) of getter powders have been provided to Alfred
7 Quartz tube . . . . .
- Univ. for developing optimized coating processes.
10 Condenser as n

Response parameters:

. Contaminants vapor pressure
. Getter validations Air
. Posttest getter morphology and chemistry

. Cathode performance: surface and cross section

Intrinsic impurities
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Combined Degradation sorc g e

Continued Cr evaporation due to spallation, higher Cr loss

A

Localized metal loss, Scale spallation, High resistance

Metal-Hydrogen Interaction Pathways

Cr evaporation

CrO,(OH),

Dual atmosphere
corrosion

AIR

Hydrogen diffusion

H,(g)™ = H,(g) & (Grain boundary Transport)
H,(g) = 2(H) pmetal (Sievert’s Law)
Y| (HuA=(HMB (Bulk transport)
"""""""" -/ (H)A=(H,)g” (Heterogeneous Nucleation)
’ (H)y+(0)= (H,0)g (Dissolved species interaction)
(H)y,+ MO = (M)+(H,0)g (Metal oxide Reduction)

T ~ 600-800 °C
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Metal-Hydrogen Interaction Pathways o

H,(g)A*™ = H,(g) ©® (Grain boundary Transport)
H,(g) = 2(H) metal (Sievert’s Law)
(HyA=(H)MB (Bulk transport)

(H)A=(H,)g” (Heterogeneous Nucleation)
(H)y#(O)\= (H,0)g (Dissolved species interaction)
(H)y+ MO = (M)+(H,0)g (Metal oxide Reduction)
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Corrosion behavior of FSS in dual atmosphere sorCprogram v

1)
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Porous scale

+ Oxidation occurs via O, dissociation and
H,O dissociation at surface

Spalled scale * Monatomic hydrogen may diffuse into
MO scale and become interstitial proton

« Charge imbalance from proton would
induce more negative charge (metal ion
vacancies)

- Leads to outward FeOx growth, porous
scale, thicker CrOx below which is
exposed upon scale spalling
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Dual Atmosphere Exposure: Test Validation
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Cr Transpiration and Dual Atmosphere Test
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Getter Fabrication
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Length=5.0 cm
Breadth=2.5 cm
Height=2.5cm

Length=5.0 cm
Breadth=1.0 cm
Height=2.5cm
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Diameter=2.5 cm
Height=0.5cm

Diameter=2.5 cm
Height=0.5cm

Optical Images and Dimensions of samples

November 16-18, 2021

Work performed by prof. Scott Misture, Alfred University
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Evaporation Studies: B and Si evaporation form glasses SOFC rogram v

Na,CO; coated Al,0, foam

AN

Humidified air Borosilicate N (RCANE Y
=~
-~ =

B and Si vapors

Humidified air Borosilicate \ / SMO b Wi b
3 ‘.‘,&n*’!' "{\fl

‘.&”‘i[ E‘T‘hi: E‘-'lt'w‘.u

Schematic of SMO getter performance test.
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Evaporation Studies: B and Si evaporation form glasses SOFC rogram v

Sample Details Boron concentration | Silicon concentration

A (Na,CO, aqueous 10680 pg/L 21570 pg/L
solution): without

SMO getter

B (Na,CO, aqueous 6500 pg/L 8027 pg/L
solution) : With SMO

getter

(Concentrationin A / 60.9 % 37.2%

Posttest SMO getter

Concentration in B) X
100

B and Si concentrations in Na,CO; (determined by
L >l SES s 2 inductively coupled plasma (ICP)
1.10 2.70 ik B 230

50.80 38.00 33.00 22,60
46.50 55.60 MoK [GP0) 69.10
c
SEM morphology and EDS analysis of posttest SMO getter at inlet % 100 100
and outlet after test in humidified air for 300h at 700C £
Q
% 60.9
(]
) ) Comparison of the =
Si and B gas phase contaminants are captured amount of boron and & 37.2
by alkali carbonates. silicon concentration 2
in the presence and in B B
the absence of SMO
getter w/o getter w/ SMO getter
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Conclusions
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» Sources of airborne impurities have been identified. Trace (ppm to ppb) levels of impurities can exist in the gas phase.

» Gas phase impurities remain predominantly acidic in nature and have affinity to react with basic constituents of the
air electrode resulting in the formation of thermodynamically stable and electrochemically inactive reaction products.

» Cell to cell interconnect shows accelerated corrosion and spallation of scale. Cr evaporation under accelerated
corrosion condition will be experimentally evaluated.

» Approaches for mitigation of scale spallation and Cr evaporation will be examined based on thermochemical models.
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Thank you
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Electrode Poisoning
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LSCF
(" - -
SO 50, absorption Sr & Co-Fe exsolution S0, desorption
4
j / S0z Srso, 6 SOy
2 (Co,Fe)O, o
f\o/ a2 e
oy — o
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r ‘P-.‘/' ) Y \ Y
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Schematic diagram of the sulfur poisoning
and recovery process of the LSCF and LSM
electrodes under the presence and absence
of SO2.9/: (A) SO2 absorption at SrO present
on the LSCF particle surface, (B) SrSO4
formation and Co-Fe exsolution over LSCF,
(C) SO2 desorption and partial dissolution of
SrS0O4 and (Co,Fe)Ox onto LSCF under SO2-
free air flow, (D) SO2 absorption on the Sr-
terminated LSM particle surface, (E) SrSO4
island formation on the LSM surface leaving
a Sr-deficient LSM, and (F) SO2 desorption
and partial dissolution of SrSO4 onto LSM
under SO2-free air flow.
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