

22nd Annual Project Review Meeting DE-FE0031972

Reversible SOFC-SOEC Stacks Based on Stable Rare-Earth Nickelate Oxygen Electrodes

Dr. John Pietras¹, Dr. Srikanth Gopalan², Dr. Yu Zhong³ Dr. Wenyuan Li⁴, Dr. Whitney Colella⁵

1 Saint-Gobain 2 Boston University 3 Worcester Polytechnic University

4 West Virginia University

5 Gaia Energy Research Institute

MAKING THE WORLD **A BETTER** HOME SAINT-GOBAIN

DE-FE0031972: TECHNICAL STRENGTHS AND BACKGROUND

SAINT-GOBAIN & SOFC PROJECT SUMMARY

Innovative & Reliable Stack Technology

All-ceramic stack 10+ year lifetime Operational simplicity Modular design Recognized Supplier Industrialization

History of Collaboration

SOEC BACKGROUND: SUCCESSFUL EERE FUNDED SEEDLING PROJECT DE-EE0008377: DEVELOPMENT OF DURABLE MATERIALS FOR COST EFFECTIVE ADVANCED WATER SPLITTING

SAINT-GOBAIN

SOEC SEEDLING PROJECT MID-TERM RESULTS

IMPROVED PERFORMANCE AND STABILITY WHILE ENABLING LOW-COST BALANCE OF PLANT

THIS PROJECT: INVESTIGATE OPERATIONAL & STACK DESIGN CONCERNS

DE-FE0031972: MOVE FROM BUTTON CELL TO STACK DESIGNS IN BOTH OPERATIONAL MODES

CELL LEVEL DEVELOPMENTAL WORK

STACK AGNOSTIC SOLUTIONS FOR MODE SWITCHING ON THE AIR ELECTRODE

Investigate Composition-Performance-Stability relationship

- Operational mode switching between SOFC/SOEC
- Dopant type/concentration in barrier layer and active layers
- Microstructural/compositional changes due to chemical and electrochemical driven processes

CELL LEVEL DEVELOPMENTAL WORK NICKEL MIGRATION AS A FUNCTION OF CURRENT AND HUMIDITY

Mitigation of Ni migration

- Focus solutions on MIEC anode side infiltration
- Dynamic SOFC-SOEC mode switching
- A range of simulated fuel compositions & temperatures
- Microstructure and compositional evolution probed through SEM, TEM and SEM-FIB analysis
- Studies to be guided by CALPHAD

CHALLENGES OF CELL TO CELL CONNECTIONS WITHIN A STACK

INVESTIGATING EFFECT OF BOTH METALLIC AND CERAMIC BASED INTERCONNECTS

Reaction paths and kinetics of Chromium poisoning

• Electrochemical deposition identified in general but not well studied in nickelate systems

 $2CrO_3(g) + 6e^- \rightarrow Cr_2O_3(s) + 3O^{2-}$

 $2CrO_2(OH)(g) + 6e^- \rightarrow Cr_2O_3(s) + 2H_2O + 3O^{2-}$

- Determination of dominant reaction path as a function of operational state: SOFC, OCV, SOEC
- Utilization of EIS and microstructural observations along with Calphad simulation

CHALLENGES OF CELL TO CELL CONNECTIONS WITHIN A STACK

INVESTIGATING EFFECT OF BOTH METALLIC AND CERAMIC BASED INTERCONNECTS

Performance of Ceramic Interconnect

- Chemical stability and electrical conductivity Upon change of P₀₂, reaction with H₂ or steam
- Chemical expansion Change of P₀₂
- Cation diffusion under high current density Induced cation/anion diffusion
- Mechanical stability in high steam concentration
- Conductivity experiments
- Microstructural and phase analysis

fuel electrode//interconnector//oxygen electrode

ENABLING STACK AGNOSTIC VOLUME PRODUCTION LOW COST, HIGH VOLUME POWDER PRODUCTION CRITICAL FOR SOEC/SOFC ADOPTION

MULTI-LEVEL MODELING SUPPORTING THE PROGRAM THERMODYNAMIC AND SYSTEM MODELING

•

AMBITIOUS PROGRAM FOCUSED ON SCALING AND REVERSIBLE OPERATION SOLUTIONS AT EACH LEVEL DESIGNED TO BE PORTABLE TO MANY SYSTEM CONFIGURATIONS

REVERSIBLE SOFC-SOEC STACKS BASED ON STABLE RARE-EARTH NICKELATE OXYGEN ELECTRODES: DE-FE0031972

Objectives to be reached during this project

- 1. Establish state-of-the-art oxygen electrode materials
- 2. Stabilize Ni-YSZ hydrogen electrode against Ni migration
- 3. Quantify the effect of cell & stack design on durability – then improve it
- Develop and quantify cost-effective and scalable manufacturing 4.

Diverse and experienced team assembled

Gaia Energy Research Institute LLC (Gaia) Energy, Environmental, and Engineering Research

Acknowledgement

SGR NORTH AMERICA • CRL • CERAMIC PROCESSING

Program started in H2 2021

		. ,	
Totals	\$2,390,670	\$597,670	\$2,988,340
Budget Period 3	\$792,500	\$198,125	\$990,625
Budget Period 2	\$798,971	\$199,745	\$998,716
Budget Period 1	\$799,199	\$199,800	\$998,999
Grant i logram Activity	Federal	Non-Federal	Total
Grant Program Activity		Budget	