22nd Annual Project Review Meeting

DE-FE0031972

Reversible SOFC-SOEC Stacks Based on Stable Rare-Earth Nickelate Oxygen Electrodes

Dr. John Pietras1, Dr. Srikanth Gopalan2, Dr. Yu Zhong3
Dr. Wenyuan Li4, Dr. Whitney Colella5

1 Saint-Gobain
2 Boston University
3 Worcester Polytechnic University
4 West Virginia University
5 Gaia Energy Research Institute
MAKING THE WORLD A BETTER HOME

SAINT-GOBAIN
DE-FE0031972: TECHNICAL STRENGTHS AND BACKGROUND
SAINT-GOBAIN & SOFC PROJECT SUMMARY

Worldwide Footprint
- 2020 Turnover: €38bn
- Operations in 67 COUNTRIES
- Over 170,000 EMPLOYEES

Innovative & Reliable Stack Technology
- All-ceramic stack
 - 10+ year lifetime
- Operational simplicity
 - Modular design
- Recognized Supplier
 - Industrialization

Culture of Innovation: 350 Years of Growth

History of Collaboration

One of the world’s 100 most innovative companies*
*Source: Thomson Reuters

SGR NORTH AMERICA • CRL • CERAMIC PROCESSING
SOEC BACKGROUND: SUCCESSFUL EERE FUNDED SEEDLING PROJECT
DE-EE0008377: DEVELOPMENT OF DURABLE MATERIALS FOR COST EFFECTIVE ADVANCED WATER SPLITTING

Leverage Strengths

Core Competencies

Businesses built around tailoring powder properties and scaling to production at industrial quantities

High Potential Material Set

Performance Potential of Nickelates \((\text{Ln}_2\text{NiO}_4)\)

- Open alternating crystal structure provides a large number of oxygen interstitial sites
- Oxygen exchange and transport is greater than state-of-the-art perovskite oxides
- Potential to avoid degradation due to voids and cracks which typically form during operation

Issue To Be Solved

Material Decomposition

- Decomposition of nickelate phase when in contact with Ceria

\[
\text{La}_2\text{NiO}_4 \rightarrow x \text{La}_0.15 + 0.5x \text{NiO}
\]

Resulting Ceria Phase: \(\text{La}_{3}\text{Sm}_{0.25}\text{Ce}_{0.75}\text{O}_{2+\frac{4}{2}}\)

Core Competencies

Businesses built around tailoring powder properties and scaling to production at industrial quantities

High Potential Material Set

Performance Potential of Nickelates \((\text{Ln}_2\text{NiO}_4)\)

- Open alternating crystal structure provides a large number of oxygen interstitial sites
- Oxygen exchange and transport is greater than state-of-the-art perovskite oxides
- Potential to avoid degradation due to voids and cracks which typically form during operation

Issue To Be Solved

Material Decomposition

- Decomposition of nickelate phase when in contact with Ceria

\[
\text{La}_2\text{NiO}_4 \rightarrow x \text{La}_0.15 + 0.5x \text{NiO}
\]

Resulting Ceria Phase: \(\text{La}_{3}\text{Sm}_{0.25}\text{Ce}_{0.75}\text{O}_{2+\frac{4}{2}}\)
Stabilization Achieved

Stabilized LNO in presence of Ceria

La$_2$NiO$_4$ retention

Co-Sintering Developed

Incorporated nickleate within co-sintered cells

SOFC structure
- LSM O$_2$ Electrode
- LSM O$_2$ Functional Layer
- 8YSZ Electrolyte
- Ni-YSZ Fuel Functional Layer
- Ni-YSZ Fuel Electrode

SOEC structure
- LSM O$_2$ Electrode
- LNO-LDC O$_2$ Functional Layer
- 8YSZ Electrolyte
- Ni-YSZ Fuel Functional Layer
- Ni-YSZ Fuel Electrode

Microstructure achieved

Functional Layer

Barrier Layer

Electrolyte

SOEC Performance Enhancement

Performance Improvement

- LNO outperforms LSM electrode
- LNO Cell successfully co-sintered
- Independent of cell design (anode supported and co-sintered cells)

SOEC

SDFC

Current Density (A/cm2)

Voltage (V)
Stack designs can be grouped by the thickest layer of an individual cell and how they are connected into a stack.

Commonalities to be studied:
- Utilize the novel air electrode
- High humidity at fuel electrode
- Interconnect Metal or Ceramic

Stack Supported
- Air Electrode
- Electrolyte
- Fuel Electrode
- Ceramic Interconnect

Anode Supported
- Air Electrode
- Electrolyte
- Fuel Electrode
- Metal Interconnect

Electrolyte Supported
- Air Electrode
- Electrolyte
- Fuel Electrode

Metal Supported
- Air Electrode
- Electrolyte
- Fuel Electrode
- Metal
- Integrated Interconnect
Cell Level Developmental Work
Stack Agnostic Solutions for Mode Switching on the Air Electrode

- Operational mode switching between SOFC/SOEC
- Dopant type/concentration in barrier layer and active layers
- Microstructural/compositional changes due to chemical and electrochemical driven processes

Investigate Composition-Performance-Stability relationship

- Oxygen Electrode Investigations (Nickelates)
- Fuel Electrode Investigations (Nickel migration)

Stack Supported
Anode Supported

Fuel Electrode
Electrolyte
Fuel Electrode
Electrolyte

Cell Level

Quantify Electrode Performance
- Stochiometry Substitutions
 - A-site
 - B-site

Baseline:
- Barrier SDC20
- Air electrode NNO/ND50
- Directly out of Seeding

Switch to better performing barrier layer from Seeding

Quantify Cell Performance
- Button cells
 - Barrier SDC20
 - Pant down air electrodes

- Performance:
 - DRT, IMP
 - IV curves
 - Operational conditions

Microstructural:
- Physical porosity, etc
- Compositional EDS, TEM, XRD

- Effect of Impurities
 - Experimental at WVU

Y. Zhang (v) Dopant S. Saunders (v) Dopant

Calculated: Calphad (WPI)
- Stability calculations
- Conductivity (defect chemistry + mobility)
- TGA/conductivity

Measured: Powder, Bars, Symmetric cells
- XRD
- DRT, IMP
- Microstructure
- Ionic conductivity bars
- EC Relaxation

Current Density (mAcm⁻²)
1000
12 h
12 h
12 h
1000

½ La₂O₃

SGR NORTH AMERICA • CRL • CERAMIC PROCESSING
Mitigation of Ni migration

- Focus solutions on MIEC anode side infiltration
- Dynamic SOFC-SOEC mode switching
- A range of simulated fuel compositions & temperatures
- Microstructure and compositional evolution probed through SEM, TEM and SEM-FIB analysis
- Studies to be guided by CALPHAD
INVESTIGATING EFFECT OF BOTH METALLIC AND CERAMIC BASED INTERCONNECTS

CHALLENGES OF CELL TO CELL CONNECTIONS WITHIN A STACK

Cell Level
- Oxygen Electrode (Nickelates)
- Air Electrode
- Electrolyte
- Fuel Electrode

Stack Level
- Stack Supported
- Anode Supported

Nickelate – Cr interconnect interactions
- Air Electrode
- Electrolyte
- Fuel Electrode
- Ceramic IC

Ceramic IC humidity interactions

Reaction paths and kinetics of Chromium poisoning
- Electrochemical deposition identified in general but not well studied in nickelate systems
 \[2CrO_2(g) + 6e^- \rightarrow Cr_2O_3(s) + 3O^2^-\]
 \[2CrO_2(OH)(g) + 6e^- \rightarrow Cr_2O_3(s) + 2H_2O + 3O^2^-\]
- Determination of dominant reaction path as a function of operational state: SOFC, OCV, SOEC
- Utilization of EIS and microstructural observations along with Calphad simulation

Library of Cr Poisoning
- Button cells from 60
- Air side compositions from OEL

Evaluation
- EIS
- TEM
- SEM

Feedback to Task 2
- Cr poisoning to LMO performance
- So poisoning from point
- check experimentally if continues

Button connecting to quantity deposition
- SoPBC
- Button back

LNO modeling
- Cr poisoning to LMO performance
In investigating effect of both metallic and ceramic based interconnects, challenges of cell to cell connections within a stack are highlighted. The diagram illustrates cell level and stack level interactions:

- **Cell Level**
 - Oxygen Electrode (Nickelates)
 - Fuel Electrode (Nickel migration)
 - Stack Supported
 - Anode Supported

- **Stack Level**
 - Nickelate – Cr interconnect interactions
 - Ceramic IC humidity interactions
 - Stack Supported
 - Anode Supported

Performance of Ceramic Interconnect
- Chemical stability and electrical conductivity: Upon change of P_{O_2}, reaction with H_2 or steam
- Chemical expansion: Change of P_{O_2}
- Cation diffusion under high current density: Induced cation/anion diffusion
- Mechanical stability in high steam concentration
- Conductivity experiments
- Microstructural and phase analysis

Fuel electrode//interconnector//oxygen electrode

$H_2, H_2O \rightarrow O_2, N_2$
ENABLING STACK AGNOSTIC VOLUME PRODUCTION
LOW COST, HIGH VOLUME POWDER PRODUCTION CRITICAL FOR SOEC/SOFC ADOPTION

Cell and Stack Production at Saint-Gobain
- Existing process was developed for the production of all-ceramic SOFC
- New materials will be incorporated into the existing process
- Co-sintering process to be optimized for new powders

Powder Production
- Saint-Gobain Grains and Powders is a leading manufacturer of ceramic materials, ex. zirconia
 - Production plants include chemical and fusion based processes
 - Research equipment includes box, tube and rotary furnaces as well as extensive powder characterization tools

Scale Up

Solution integration and stack testing

Techno-economic analysis

Incoming Powder
- Powders are formed processed to desired characteristics

Sheet/Tape Casting
- Powders are dispersed with binders and cast into sheets

Assembly/Firing
- Components are combined and sintered into cells/stacks

Finishing/Sealing
- Final dimensions are achieved and glass seal to applied
MULTI-LEVEL MODELING SUPPORTING THE PROGRAM
THERMODYNAMIC AND SYSTEM MODELING

Thermodynamic Calculations

CALPHADPLUS Approach

System Modeling

Gaia Energy Research Institute LLC (Gaia)
Energy, Environmental, and Engineering Research

SOE System Cost Drivers
- Stack power density
- System capital costs
- Electricity consumed per unit hydrogen produced
- Recovered heat

Solution integration and stack testing

Techno-economic analysis
AMBITIOUS PROGRAM FOCUSED ON SCALING AND REVERSIBLE OPERATION
SOLUTIONS AT EACH LEVEL DESIGNED TO BE PORTABLE TO MANY SYSTEM CONFIGURATIONS

Cell Level
- Oxygen Electrode (Nickelates)
- Air Electrode
- Electrolyte
- Fuel Electrode
- Stack Supported
- Anode Supported
- Fuel Electrode (Nickel migration)

Stack Level
- Nickelate – Cr interconnect interactions
- Air Electrode
- Electrolyte
- Fuel Electrode
- Ceramic IC
- Stack Supported
- Anode Supported
- Ceramic IC humidity interactions

Scale Up
Solution integration and stack testing
- Air Electrode
- Electrolyte
- Fuel Electrode
- Ceramic IC
- Anode Supported

Techno-economic analysis
- Metal IC
- Air Electrode
- Electrolyte
- Fuel Electrode
- Stack Supported

13
Objectives to be reached during this project

1. Establish state-of-the-art oxygen electrode materials
2. Stabilize Ni-YSZ hydrogen electrode against Ni migration
3. Quantify the effect of cell & stack design on durability – then improve it
4. Develop and quantify cost-effective and scalable manufacturing

Program started in H2 2021

<table>
<thead>
<tr>
<th>Grant Program Activity</th>
<th>Budget Federal</th>
<th>Budget Non-Federal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget Period 1</td>
<td>$799,199</td>
<td>$199,800</td>
<td>$998,999</td>
</tr>
<tr>
<td>Budget Period 2</td>
<td>$798,971</td>
<td>$199,745</td>
<td>$998,716</td>
</tr>
<tr>
<td>Budget Period 3</td>
<td>$792,500</td>
<td>$198,125</td>
<td>$990,625</td>
</tr>
<tr>
<td>Totals</td>
<td>$2,390,670</td>
<td>$597,670</td>
<td>$2,988,340</td>
</tr>
</tbody>
</table>

Diverse and experienced team assembled

Acknowledgement